

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101004291

Evidences for the assessment report
D6.2

Document Code: AUR-ESC-RP-0014

Document Version: 2.2

Document Date: 02/06/2023

Internal Reference: DOC00304822

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Signature Control

Written Checked Approved

Configuration
Management

Approved

Quality Assurance

Approved

 Project Management

V. Fišer

A. Lyko

A.I. Rodriguez

M.A de Miguel

A.G. Pérez

J. Gómez del Pulgar

P. Česák

A.I. Rodriguez

R.M León A. López A.I. Rodriguez

Date and Signature

Date and Signature

Date and Signature

Date and Signature

Date and Signature

Signature not needed if electronically approved by route

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Changes Record

Rev Date Author Affected section Changes

0.1 24-06-2022 V. Fišer All Initial issue

0.2 05-08-2022 V. Fišer 1, 4, 5, Annex B
Modified document structure, transformed Annex
B

0.3 12-08-2022 V. Fišer 4, 5, Annex C
Added part of UPM data, enhanced chapter 4
structures, expanded table in chapter 5

0.4 24-08-2022 A.I. Rodriguez 1 and 3; All
Minor changes in 1 and 3.

All: general revision of the document

0.5 12-09-2022
V. Fišer, A. Lyko

A.G. Pérez

4 and 5; All

1.1, 1.21.3, 2.3, and 5

Split ESC/SAE and UPM results into two chapters

All: implemented feedback from comments

Updated document’s purpose in section 1.1.

Added document’s contents in section 1.3.

Added UPMSat-2 overview in sections 5.1 and 5.2.

Added UPMSat-2 KPI values.

0.6 26-09-2022
V. Fišer

A.G. Pérez

4.2 and 4.3

9, 10, 11, and Annex C

Added results of TASTE integration and related
chapters

Add more SIL and PIL test cases for UPMSat-2

1.0 03-10-2022 V. Fišer 4
Included all feedback into initial version, added
links into references in chapter 4

1.1 03-10-2022 A.G. Pérez 5
Added elements from 0.6 version lost during the
first integration in v1.0.

2.0 26-01-2023

P. Česák

A.G. Pérez

V. Fišer

J. Gómez

4.1

4.2

4.12

5.12

Prepared for MS8 (editorial changes)

Added sections 4.1and 4.2 about Euclid KPIs

Updated Euclid KPI data Summary

Updated UPMSAT2 KPI data Summary

2.1 06-02-2023

P. Česák

A.G. Pérez

V. Fišer

J. Gómez

General Released after internal review

2.2 02-06-2023 J. Gómez Annex A Included the Excel file referenced in Annex A.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Table of contents

1. Introduction ... 6

1.1. Purpose ... 6

1.2. Scope ... 6

1.3. Contents .. 6

2. Related Documents .. 7

2.1. Applicable documents ... 7

2.2. Reference documents .. 7

2.3. Acronyms ...8

2.4. Terms and definitions ... 9

3. Overview ...10

4. Euclid KPI data .. 12

4.1. Introduction to the Euclid Attitude and Orbit Control System 12

4.2. Euclid Simulink and TASTE models ... 13

4.3. Code interfaces .. 14

4.4. Taste .. 14

4.5. Tools ... 16

4.6. AdaCore’s support ... 16

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.7. Effort ... 17

4.8. Models .. 19

4.9. Code Metrics .. 21

4.10. Coverage .. 23

4.11. Tests ... 24

4.12. Euclid KPI data Summary ... 26

5. UPMSAT2 KPI data .. 31

5.1. Introduction to the UPMSat-2 Attitude Control System31

5.2. UPMSat-2 ACS Simulink and TASTE models 32

5.3. Code interfaces .. 34

5.4. Taste .. 36

5.5. Tools ... 37

5.6. AdaCore’s support ... 38

5.7. Effort .. 38

5.8. Models .. 38

5.9. Code Metrics ... 42

5.10. Coverage .. 47

5.11. Tests ... 50

5.12. UPMSAT2 KPI data Summary ... 52

Annex A – Euclid KPI results .. 57

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Annex B – Models adaptation metrics 58

Annex C – UPMSat-2 PIL & SIL test and coverage results 60

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

1. Introduction

1.1. Purpose
This document is an output from Task 6.2 “Preparation of the key data TRA for QGen” included in WP6
“Demonstration Viability Assessment”. This document covers the evidence for the applicability of the QGen tool
set in the software design, modelling, simulation and verification of Attitude, Orbit and Control Systems (AOCS)
applications in space missions.

This document shall serve as an entry point for performing the analysis of key data and evaluation of TRL.

1.2. Scope
The scope of this document is to provide information about measurement of KPIs defined in D6.1. This document
aims to describe the methods used to measure data, the result of the measurement and pointers to the evidence.

1.3. Contents
The overall contents of this document have been organized as follows, including this introductory chapter:

• Chapter 2 contains the applicable and reference documents, the list of terms, definitions, and acronyms.

• Chapter 3 gives a general overview of the evaluators and the TRA plan phases.

• Chapter 4 presents the KPIs and analyses the KPI results from the EUCLID technology demonstrator.

• Chapter 5 presents the KPI results from the UPMSat-2 demonstrator.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

2. Related Documents
The following documents in the latest issue/revision are part of this document.

2.1. Applicable documents
AD # Title Reference Issue Rev

[AD01] AURORA Grant Agreement GA number 101004291 - -

[AD02] Quality Assurance Management Plan AUR-SAE-PL-0001 - 1

[AD03] AURORA SW Development Plan AUR-SAE-PL-0002 - 1

[AD04] AOCS/GNC Code Generator Requirements
specification

AUR-SAE-SP-0001 - 1.0

Table 1 Applicable documents

2.2. Reference documents
RD # Title Reference Issue Rev

[RD01] D3.4 QGen tool-set and SW development
environment

AUR-ESC-RP-0022

[RD02] D3.9 Test cases reporting (PIL & HIL) AUR-ESC-RP-0008

[RD03] D3.10 SW Verification report (PIL & HIL) AUR-ESC-RP-0009

[RD04] D3.6 QGen evaluation report AUR-ESC-RP-0024

[RD05] D3.7.2. Test cases specification AUR-SAE-SP-0002

[RD06] D6.1 TRA plan AUR-UPM-PL-0005

[RD07] D3.5 Demonstration Simulink Models AUR-SAE-RP-0023

[RD08] Demonstration for the QGen integration into
TASTE

Link to the website

[RD09] UPMSat-2 ACS implemented in TASTE Link to the GitHub repo

[RD10] UPMSat-2 OBDH implemented in TASTE Link to the GitHub repo

[RD11] UPMSAt-2 ACS Simulink models Link to the GitHub repo

[RD12] WP6 Study on effort estimation in Autocoding
SW Development

AUR-SAE-TN-0002

https://taste.tuxfamily.org/wiki/index.php?title=QGen
https://github.com/STR-UPM/UPMSat-2_ACS_TASTE
https://github.com/AngelPerezM/OBDH_LABS/tree/stm32_implementation/TASTE_Integration
https://github.com/STR-UPM/UPMSat-2_Simulink_Models

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Table 2 Reference documents

2.3. Acronyms
Acronym Description

AOCS Attitude and Orbit Control (sub-)System

AD Applicable Document

GNC Guidance Navigation Control

HDD Hard Disk Drive

HW Hardware

HTML Hypertext Markup Language

KPI Key Performance Indicator

LOC Lines of code

MIL Model in the loop

N/A Not Applicable or Available

OS Operating System

PIL Processor in the loop

PWM Pulse Width Modulation

QA Quality Assurance

RAM Random Access Memory

RD Reference Document

SIL Software in the loop

SW Software

TASTE The ASSERT Set of Tools for Engineering

TBA To be added

TBD To be Determined

TBW To be written

TRA Technological Readiness Assessment

TRL Technological Readiness Level

VM Virtual Machine

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Table 3 Acronyms

2.4. Terms and definitions
Acronym Description

AdaCore SW development tools supplier company

Matlab
Programming and numeric computing platform used to analyse data, develop algorithms, and
create models.

Processor in
the loop

In processor-in-the-loop (PIL) simulation, the generated code from model runs directly on the
target hardware, which means you can test models on the hardware using the same test cases
as on the host.

QGen Qualifiable code generator and static analyser for Simulink(R) and Stateflow(R)

Software in
the loop

The Production Software Code is incorporated into the mathematical simulation that contains
the models of the Physical System.

Simulink Block diagram environment for simulation and Model-Based Design integrated with MATLAB.

TASTE
A toolchain targeting heterogeneous embedded systems, using a model-based development
approach.

Table 4 Terms and definitions

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

3. Overview
This document aims to explain methods and ways the KPI data was obtained for the second phase of the TRA
plan. The KPI data were extracted from within the two demonstrator projects – the Euclid project and UPMSAT2
project – on which the QGen’s code generation process was performed.

The TRA Plan includes three main phases:

1. Definition of the details of the TRA plan. This plan includes the identification of KPIs to provide TRL
evidences and the criteria to do their evaluations. This plan will be centered on the evaluation of two TRL
levels TRL6 and TRL7.

2. Quantification of key data. This phase will be elaborated on in task T6.2. This phase will include the
preparation of the key data TRA for QGen and some of key data for previous version of EUCLID project.
Those two evaluations will be used as comparison evaluators that will be used as evidence.

3. The final phase will reuse the key data produced in the previous phase to report the TRA for QGen. The
key data will be used to perform a comparative analysis of development cost with previous technologies
and QGen technologies, evaluate the applicability of QGen technologies and their impact on the software
development process, and validate the results produced with QGen technologies.

The next figure includes the different phases and activities developed in every phase:

1. Definition of TRA Plan:

a. Definition of KPI categories and KPI.

b. Definition of TRL analyzed.

c. Definition of KPI quantification for the evaluation of TRLs.

2. Evaluation of key data

a. Compilation of evidences for the assessment, gathering data on indicators and additional
information where necessary. The results of this gathering are used for the evaluation of KPIs.

b. Monitoring the specific targets of the KPIs to evaluate for the different models and projects.

c. Quantification of KPI and Generation of evidences.

3. Analysis of key data and evaluation of TRL.

a. Integration of key data produced for the different projects and models.

b. Evaluation of TRL 6 and 7.

c. Elaboration of conclusions.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Figure 1 TRA plan phases

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4. Euclid KPI data
The following chapter describes methods used to extract defined KPI data in [RD06] section 6.4, the obtained
KPI data results and the location of the evidences supporting the results. If more KPIs had similar results
acquisition or are stored at the same place, check subchapter text for more information.

For a generic definition of the environment used and its evaluation, please refer to RD01 and RD04.

The test cases specification and reporting can be found in RD05and RD02respectively.

4.1. Introduction to the Euclid Attitude and Orbit Control System
Euclid is a medicum-classs mission of ESA’s Science Program whose objective is the elucidate the geometry and
the nature of the dark energy and dark matter components with unprecedented accuracy, of the order of micro
arcseconds when in science mode. For that a complex multi-mode AOCS has been developed by Sener
Aeroespacial.

The AOCS is composed of sensors (Sun sensors, IMU, Coarse Rate sensors, STR and Fine Guidance Sensor) and
actuators (Reaction wheels, Reaction Control System and Micro Propulsion System) for the different activities
needed. The different sensors and actuators are needed in function of the AOCS mode the satellite is, being
science mode the more demanding mode due to the hard limitations in terms of accuracy and stability.

Figure 2: Euclid AOCS Architecture

Euclid AOCS has the special feature that it is one of the first missions to be launched where the GNC algorithms
were autocoded based on Simulink models shifting the traditional manual code validation to an autocoded
philosophy, which focus on reduction on developing times. This code is then integrated inside a manual coded
application software containing the FDIR functionalities, communication with the rest of the systems and the
mode manager.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.2. Euclid Simulink and TASTE models
The model tested in TASTE was sam_ctrl model. The top part of the model can be seen on Figure 4 sam_ctrl
model in Matlab. The model was modified for each of the 4 submodels (at, dz, rd, sa) and saved separately for
TASTE usage. The reason for splitting the model is further described in section 4.4.2.2.

Once split in MATLAB, the model was setup in the following way. The application, written in C, contained the
data. It had the tick interface periodically sending the data through the data transfer interface to the samCtrlAt
section. The samCtrlAt section was marked implemented in QGenC and it generated support files as the
model.slx file, where the target model was pasted and in which directory support libraries were put. Once
setup, the model was built, code generated and the application ran, printing the output data to console.

Figure 4 sam_ctrl model in Matlab

Figure 3 sam_ctrl_at model in TASTE

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.3. Code interfaces

4.3.1. OIQ01 – Integration: Other_Sw(QGen_Code)

4.3.1.1. Measurement
This KPI was not measured, its status was determined based on the QGen generated code observable
characteristics. It has an entry point in the form of callable function. Therefore, it can be integrated into any
project’s source code at pre-build phase.

4.3.1.2. Results
QGen generated code was called from the SIL framework during SIL testing and PIL simulation framework during
the PIL phase testing. Each test scenario was run with a framework. Results of the simulated runs are in Annex A,
list DYN stat., in the PIL test status column.

4.3.1.3. Evidence
The tests, where Qgen generated code was run through other code, can be found at Teams/WP3 – AOCS-GNC-
generators/Files/PIL/test

4.3.2. OIQ02 – Inclusion: QGen_Code(Other_Sw)

4.3.2.1. Measurement
Simulink models can use C or MATLAB code via s-functions. QGen supports s-functions in code generations. This
statement was tested by using a human-written code within the fpmrcs_mm model, specifically
fpmrcs_matlab_function.c. The code was compiled without issues and worked as expected. A similar approach
was taken by UPM as well.

4.3.2.2. Results
Other code can be used in QGen generated code. Results of the simulated run with said file are in Annex A, list
DYN stat., in the SIL test status column.

4.3.2.3. Evidence
The test scenario with the file is available at Teams/WP3 – AOCS-GNC-generators/Files/PIL/test/19_fpmrcs_mm
with results in the log file within test scenario in former file path. QGen support for s-functions is described
here: https://docs.adacore.com/live/wave/qgen/html/qgen_ug/legacy.html#calling-c-or-ada-code-using-s-
function-block

4.4. Taste

4.4.1. OIQ03 – QGen integration into TASTE

4.4.1.1. Measurement
QGen was deemed integrable if it was able to be launched from TASTE. The ability to launch was verified with
building correctly the provided model.

https://docs.adacore.com/live/wave/qgen/html/qgen_ug/legacy.html%23calling-c-or-ada-code-using-s-function-block
https://docs.adacore.com/live/wave/qgen/html/qgen_ug/legacy.html%23calling-c-or-ada-code-using-s-function-block

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.4.1.2. Results
QGen is integrable into TASTE with few issues. We have encountered small issues with the pipeline/process
during our testing. Firstly, known bug with very simple models (QGen didn’t generate init function for
output=input model) and one documented in 4.4.2.2.

4.4.1.3. Evidence
Location of the built models can be found at Teams/WP3 – AOCS-GNC-generators/Files/TASTE_outputs

4.4.2. OIQ04 – number of Simulink models integrated into TASTE

4.4.2.1. Measurement
Final number of Simulink models (or their submodels) integrated into (build with) TASTE.

4.4.2.2. Results
After initial attempts with very simple model to familiarize ourselves with the environment, we tried to build the
entire sam model. During the process, we encountered the error shown in Figure 5 and we decided to break the
model into its parts and test each of them separately.

We managed to make 2 submodels work, specifically sam_ctrl_at and sam_ctrl_dz. We encountered some issues
with the integration of the other submodels, however, colleagues from N7S managed to make them work. For
unknown reasons, the sam_ctrl_rd model and the sam_ctrl_sa failed to compile on both default deployment and
on specified x86 linux cpp deployment. In both cases, the error was the following:

Figure 5 error report from building sam_ctrl_rd model

This error was encountered on the latest version of TASTE VM and even when reverting to a known commit,
where N7S reported that the build worked. Therefore, we assume that the issue might be with our installation of
the VM, however we are unable to confirm that.

The two models that worked as expected were tested on tiny extract of the dataset provided for SIL testing and
their output was compared to reference SIL output. Both tests provided exact same numbers in two of three
monitored numbers. The third number was different due to different environment setup, specifically due to
different constants values. Only this number was modified by them, hence the difference.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.4.2.3. Evidence
Location of the built models can be found at Teams/WP3 – AOCS-GNC-generators/Files/TASTE_outputs

4.5. Tools

4.5.1. OMQ01 – number of modelling tools for QGen code generation

4.5.1.1. Measurement
The result was calculated as the total number of tools to be used with the TASTE pipeline.

4.5.1.2. Results
The number of tools is 3, specifically TASTE and MATLAB/Simulink and QGen

4.5.1.3. Evidence
Location of the built models can be found at Teams/WP3 – AOCS-GNC-generators/Files/TASTE_outputs

4.6. AdaCore’s support
This chapter focuses on all KPIs related to communications with AdaCore, creators of the QGen tool. The
communication with AdaCore started on 22.12.2020 and measurements were taken as of 11.5.2022, measuring
the interval of roughly a year and a half. Results and data related to this chapter are stored in Annex A – Euclid
KPI results, list AdaCore. All data for measurement were gathered via their bug/issue tracking website https://gt3-
prod-1.adacore.com/.

4.6.1. OAS01 – number of support requests to AdaCore

4.6.1.1. Measurement
AdaCore themselves separate tickets on their website to closed and opened with number of tickets in each
section and their classification was used here.

4.6.1.2. Results
There were 25 tickets sent via the bug reporting interface to date. 22 of them were closed to date, 3 were still
open.

4.6.1.3. Evidence
Refer to chapter 4.6 introduction.

https://gt3-prod-1.adacore.com/
https://gt3-prod-1.adacore.com/

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.6.2. OAS02 – AdaCore’s response time for support requests

4.6.2.1. Measurement
For each individual issue/bug time delta was calculated between the initial message and human response.
Automatic responses sent immediately after the initial message were not counted.

4.6.2.2. Results
Out of the 21 analysed tickets, average was counted at 454.81 minutes, so it takes roughly 7.58 hours for reply
from the AdaCore’s team.

4.6.2.3. Evidence
Refer to chapter 4.4 introduction.

4.6.3. OAS03 – number of issues and bugs sent to AdaCore

4.6.3.1. Measurement
There were 3 tickets classified as minor bugs in the ticket system titled: failure in QGen Verifier reporter, Problem
with pointers as input parameters in S-functions and Problem with structure as Model argument input.

4.6.3.2. Results
There was also one ticket classified as major bug titled Problems with Qgenc generated code. So, the result is 3
minor bugs, 1 major bug and 17 issues, meaning tickets not classified as bugs.

4.6.3.3. Evidence
Refer to chapter 4.4 introduction.

4.6.4. OAS04 – number of days to solve a bug by AdaCore

4.6.4.1. Measurement
Time to close ticket was defined as time from ticket opening until fix was released in the wavefront version. The
difference in time was then converted to days. Time measured for the major bug ticket was from initial post to
post with confirmation of success from the customer team, as there was no clear announcement, that new
wavefront was released.

4.6.4.2. Results
The average time to solve a bug by AdaCore is 17,177 days.

4.6.4.3. Evidence
Refer to the introduction chapter (section 4.6).

4.7. Effort
Comparison of spent effort on generated code versus manual coding was provided by SAE. Work time was
measured on several SAE internal projects during each phase (Modelling, SW development and SW testing). Total

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

effort spent on a project was estimated and projects of similar complexity compared. The following are some
relevant data taken from Table 8 of [RD12]:

Project LoC AOCS/GNC SW

Development
(Hours)

Testing Phase
(Hours)

Complexity Remarks

Euclid 56000 11.710 6.490 High Autocoding

Hershel 41000 25.370 10.148 High Manual coding

VNE
(NAVIGA)

3600 5.003 2.001 High SW Category Level A /
SENER: Library SW

development

AFTU/ERIS 10.000 2.040 816 Medium Autocoding based on
Euclid coding rules; reuse

from VNE (models and
simulator)

Table 5 Efforts and complexity

For the detailed process description, internal projects summary and comparison per phase see the full study at
[RD12].

Effort Allocation Manual Code Autocoding

Management (PM+QM+RAMS) 10% 7%

Spec + Architecture 20% 0%

Detailed Design + Coding + Unit testing 40% 12%

Integration + Validation 30% 21%

Total 100% 40%

Table 6 Efforts allocation per Phase

4.7.1. DPI01 – reduction of development effort

4.7.1.1. Measurement
The total reduction in development effort was measured as percentile difference between the estimated auto
coding effort and the manual coding effort, normalized at 100%. A comparison of an estimation in allocation of
efforts to the SW Development & validation processes is displayed in the previous table.

4.7.1.2. Result
Therefore, the reduction of development effort is

reduction of development effort = (1.0 – 0.4) / 1.0

which is 60%.

4.7.1.3. Evidence
For more information refer to the study in [RD12].

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.7.2. DPI02 – reduction in testing time

4.7.2.1. Measurement
The reduction in testing time was calculated as normalized percentile difference between the effort allocated on
Integration + Validation section from Table 6 from the previous chapter.

4.7.2.2. Result
The reduction in testing time is therefore

reduction in testing time = (0.3 – 0.21) / 0.3

which is 30%.

4.7.2.3. Evidence
For more information refer to the study in [RD12].

4.8. Models
Let’s clarify some terms used in this chapter. A basic block is defined as a normal Simulink block that is part of the
internal Simulink library or another external one, i.e., the gain block. A Simulink element is defined as a basic block
with connections between them (signals).

4.8.1. ORS01 – percentage of modified blocks for QGen compatibility

4.8.1.1. Measurement
The percentage of modifications of model was measured as number of modified blocks divided by total number
of blocks in model.

4.8.1.2. Result
Euclid models had 184 out of total 5460 modified. Total number of modified blocks in all models was 3%. The
number of modified blocks and the percentage of modified model can be found in Annex B in columns Modified
blocks and % Model modified respectively for each individual model.

4.8.1.3. Evidence
Evidence can be found at [RD07].

4.8.2. DQA01 – number of models used in project

4.8.2.1. Measurement
For Euclid models, number was determined as number of sub models/sub tests of the main three models (SAM,
FPMRCS, OCM).

4.8.2.2. Result
Total number of these sub models is 33. Complete list of models and sub models for the main triplet can be found
in Annex B.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.8.2.3. Evidence
Evidence can be found at [RD07].

4.8.3. DQA02 – number of Simulink elements

4.8.3.1. Measurement
Number of Simulink elements was gained as a sum of number of basic blocks in each model added to the number
of signals in said model. For definition of basic block see 4.8.

4.8.3.2. Result
The total number of Simulink elements in the models is 6005. The number for each individual model can be found
in Annex B – Models adaptation metrics, column Number of elements.

4.8.3.3. Evidence
For details about the used Euclid models, see [RD07]. Those models are proprietary. For more details contact
SENER Aeroespacial.

4.8.4. DQA03 – effort to develop Simulink models

4.8.4.1. Measurement
Number of hours required to develop models in 4.8.2.

4.8.4.2. Result
The effort to create Euclid models was 5220 hours. The following adaptation of the models to QGen took 410
hours.

Data can be found in the Annex A.

4.8.4.3. Evidence
Data available at internal project control facility for SENER AE.

4.8.5. DQA004 – maximum subsystem depth

4.8.5.1. Measurement
For a subsystem depth measurement, standard MATLAB metrics for measuring subsystem depth were utilized.

4.8.5.2. Result
Maximum subsystem depth is 5 for model fpmrcs_nm_gui_ls_gui. Subsystem depth for each individual model can
be found at Annex B – Models adaptation metrics, column Subsystem depth.

4.8.5.3. Evidence
For details about the used Euclid models, see [RD07]. Those models are proprietary. For more details contact
SENER Aeroespacial.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.8.6. DQA005 – maximum number of basic Simulink blocks

4.8.6.1. Measurement
For definition of basic Simulink block see 4.8.

4.8.6.2. Result
The maximum number of basic Simulink blocks is 1386 blocks for fpmrcs_nm_gui_ls_gui model. Only two models
contained over 1000 blocks, third largest had 312 blocks, rest had less than 300 blocks.

Number of basic Simulink blocks for each individual model can be found in Annex B – Models adaptation metrics,
column Number of basic Simulink blocks.

4.8.6.3. Evidence
For details about the used Euclid models, see [RD07]. Those models are proprietary. For more details contact
SENER Aeroespacial.

4.8.7. DQA006 – maximum number of nested bus structures

4.8.7.1. Measurement
For number of nested bus structures, definition of the global bus definition is looked up. In addition, the nested
bus structure directly relates with the maximum nested structure variable definition of the parameters.

4.8.7.2. Result
The maximum number of nested bus structures is 4. This value was reached by two models, fpmrcs and ocm
model. Number of nested bus structures for each individual model can be found in Annex B – Models adaptation
metrics, column Number of nested bus structures.

4.8.7.3. Evidence
For details about the used Euclid models, see [RD07]. Those models are proprietary. For more details contact
SENER Aeroespacial.

4.9. Code Metrics
SourceMonitor was used for gathering the code metrics with following parameters. A project was opened with
following settings:

• Code language: C; File extension: *.c, *.h

• Use standard complexity metric

• Do Not count blank lines
• Ignore continuous Header and Footer comments

4.9.1. DQA007 – code cyclomatic complexity

4.9.1.1. Measurement
The maximum number of nested statements in a function is calculated via the default option in SourceMonitor.
They are calculated as defined in the book Code Complete, Microsoft Press, 1993, p.395 by Steve McConnell. By

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

default, complexity is one. Each branch statement such as if, else, for, while add one complexity, ternary operators
add one complexity. Each condition in if statement adds one complexity. Switch statements add one complexity
for each exit from a case and one for default case even when none is present. Each catch or except statement in
a try block adds one complexity as well.

4.9.1.2. Results
Average complexity in the models is 7.68. Result is stored in [RD03] in Annex B list QGEN_AUTOGENSW_1.0.0-
baseline.

4.9.1.3. Evidence
Generated data from Euclid models are stored in [RD03] in Annex B.

4.9.2. DPI005 – maximum number of nested statements in a function

4.9.2.1. Measurement
Maximum number of nested statements in a function is the maximum nested block depth level found. At the
start of each file the block level is zero. Depths up to 9 are recorded and all statements at deeper levels are
counted as depth 9. This is indicated by the "9+" label for the deepest level.

4.9.2.2. Results
The maximum number of nested statements in the generated models is 6. Result is stored in [RD03] in Annex B
list QGEN_AUTOGENSW_1.0.0-baseline.

4.9.2.1. Evidence
Generated data from Euclid models are stored in [RD03] in Annex B.

4.9.3. DPI006 – number of statements

4.9.3.1. Measurement
In C, computational statements are terminated with a semicolon character. Branches such as if, for, while, and
goto are also counted as statements. Preprocessor directives #include, #define, and #undef are counted as
statements. All other preprocessor directives are ignored. In addition, all statements between an #else or #elif
statement and its closing #endif statement are ignored, to eliminate fractured block structures. This metric
counts all the statements in a file, or in all files in a checkpoint.

4.9.3.2. Results
There are 29541 statements in the generated models. Result is stored in [RD03] in Annex B list
QGEN_AUTOGENSW_1.0.0-baseline.

4.9.3.3. Evidence
Generated data from Euclid models are stored in [RD03] in Annex B.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.9.4. DSQ001 – comment frequency within the generated functions

4.9.4.1. Measurement
Comment frequency takes all lines with C style (/* … */) or C++ style (// …) comments and divides their number
by number of all lines. If option ignore headers and footers is checked, they are not counted, blank lines are not
counted as well if ignore blank lines is checked.

4.9.4.2. Results
The rate of comments in the generated code is 27.4%. Result is stored in [RD03] in Annex B list
QGEN_AUTOGENSW_1.0.0-baseline.

4.9.4.3. Evidence
Generated data from Euclid models are stored in [RD03] in Annex B.

4.9.5. DPI007 – number of lines of generated code per function

4.9.5.1. Measurement
Calculated in similar way as 4.7.3.1. but only for a function.

4.9.5.2. Result
Average number of statements of generated code per function is 28.2. Result is stored in [RD03] in Annex B list
QGEN_AUTOGENSW_1.0.0-baseline.

4.9.5.3. Evidence
Generated data from Euclid models are stored in [RD03] in Annex B.

4.10. Coverage
All the coverage data in this chapter were obtained by running the tests on a Debian virtual machine. The QGen
generated code was run on the machine for SIL testing, and on via TSIM2 emulator on the machine for PIL testing.
The top models (sam, fpmrcs, ocm) were run with QGen version 23, other with version 22. Data were gathered
via gcov and lcov tools, transferred to html reports using genhtml tool and processed.

For a detailed description of the testing process, please refer to [RD03], section 5.2.1, for details on PIL testing
process, check the document [RD03], section 5.3.

4.10.1. DSQ002 – coverage % of branches during SIL

4.10.1.1. Measurement
Branch coverage is a percentage of branch taken from all branches in the code. For each model, only specific
previously defined files were monitored, and their branch coverage was averaged. For detailed procedure of tools
involved refer to 4.8.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.10.1.2. Result
Average branch coverage for all test cases is 96.14%. The averaged coverage for each test case can be found in
Annex A, list DYN stat., columns % statement coverage (measured). Relevant files for which coverage was measured
for each SAE test scenario and their values can be found in [RD03], Annex C.

4.10.1.3. Evidence
HTML reports for all tests are available on Teams/WP3 – AOCS-GNC Code Generator/Files/SIL/COV-RP.zip. Relevant
data for this section from these reports are also stored in Annex A, list DYN Stat.

4.10.2. DSQ003 – coverage % of function statements during SIL

4.10.2.1. Measurement
Function statement coverage is a percentage of statements hit from all the statements in the code. For each
model, only specific previously defined files were monitored, and their branch coverage was averaged. For
detailed procedure of tools involved refer to 4.8.

4.10.2.2. Result
Average statement coverage for all test cases is 96.11%. The averaged coverage for each test case can be also
found in Annex A, list DYN stat., columns % branch coverage (measured). Relevant files for which coverage was
measured for each SAE test scenario and their values can be found in [RD03], Annex C.

4.10.2.3. Evidence
HTML reports for all tests are available on Teams/WP3 – AOCS-GNC Code Generator/Files/SIL/COV-RP.zip. Relevant
data for this section from these reports are also stored in Annex A, list DYN Stat.

4.10.3. DSQ004 – coverage % of branches during SIL
Duplicate of DSQ002.

4.10.4. DSQ005 – coverage % of function statements during PIL
Given that the monitored files were not affected in any way during the SIL->PIL transformation, we assumed the
same results as for SIL, since the test scenarios are the same.

4.11. Tests
All the testing data in this chapter were obtained by running the tests on a Debian virtual machine. The QGen
generated code was run on the machine for SIL testing, and on via TSIM2 emulator on the machine for PIL testing.
The top models (sam, fpmrcs, ocm) were run with QGen version 23, other with version 22.

For a detailed description of the testing process, please refer to [RD03], section 5.3, for details on PIL testing
process, check the document [RD03], section 5.3.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.11.1. DPI003 – error tolerance in the MIL

4.11.1.1. Measurement
Values obtained during runs in MATLAB/Simulink environment. For more information, please refer to [RD05].

4.11.1.2. Results
All MIL error tolerances are 0.00E+00. MIL error tolerance results for each test are in the table from Annex A, list
DYN stat. column DPI003 – MIL tolerance (with respect to Euclid; see D3.7)

4.11.1.3. Evidence
See [RD05], section “3.1.2 Reference Test”, “Figure 3: Comparison graphs modified vs unmodified models”. For
details about the used Euclid models, see [RD07]. Those models are proprietary. For more details contact SENER
Aeroespacial.

4.11.2. DPI004 – error tolerance in the MIL-SIL

4.11.2.1. Measurement
The software evaluation metric with respect to the numerical threshold is set to 1e-15 between MIL and SIL. Any
larger numerical difference will result in the test to be considered FAIL, while if differences are below this value,
the test is considered PASS. The numerical threshold that was set internally in the SIL execution test was set to 0.
This is due to ensure that all numerical discrepancies are collected and evaluate the tolerance of the tool.

4.11.2.2. Results
All tests passed with required tolerance. For details on which tests passed with which tolerance, see Annex A, list
DYN stat. column SIL tolerance (see D3.10) under SAE section. For comments and more details on results, check
[RD03], section 4.1.

4.11.2.3. Evidence
A zip file named MIL-SIL comparison is attached to D3.10 Software Verification Report [RD03], It contains all the
results from the SIL campaign, i.e., MIL-SIL comparison and SIL results.

4.11.3. DSQ006 – SIL test without error

4.11.3.1. Measurement
Each test that ran correctly within specified threshold was deemed successful. Even some tests with early errors
(due to uninitialized values) were deemed as successful if justification was right.

4.11.3.2. Results
Due to several issues with various models during our SIL testing, data from [RD03], section 4.1 SIL Tests Report
were used. Comments where specific model failed and the result of running the model can be found in Annex A,
list DYN stat. column SIL test status under ESC section.

4.11.3.3. Evidence
A zip file named MIL-SIL comparison is attached to D3.10 Software Verification Report [RD03], It contains all the
results from the SIL campaign, i.e., MIL-SIL comparison and SIL results.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

4.11.4. DSQ007 – PIL test without error

4.11.4.1. Measurement
All the testing data in this chapter were obtained by running the tests on a Debian virtual machine utilizing the
TSIM2 emulator for PIL testing. The top models (sam, fpmrcs, ocm) were generated with QGen version 23, other
with version 22. For more details on the test machine setup see [RD03], section 5.3.

4.11.4.2. Results
All models except fpmrcs and fpmrcs_mm passed with zero tolerance. The two that didn’t, passed partially with
tolerance of 1.00E-15. The reason they passed only partially is due to having some errors during the first iterations
of the model. Relevant data for this section from these reports are also stored in Annex A, list DYN Stat columns
PIL tests status and PIL tolerance.

4.11.4.3. Evidence
Results of the runs for each individual test and its scenarios are available on Teams/WP3 – AOCS-GNC Code
Generator/Files/PIL/test/test_name/scenario_name/log/*.results.

4.12. Euclid KPI data Summary
The following table provides quick summary of data above. Specifically, procedures used to gather result for the
KPI, where data from measurement is located and where evidence/proof is located.

D2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

OIQ01
Integration:

Other_SW (Qgen
code)

True
Observable characteristics of
code

Annex A – Euclid
KPI results, DYN
stat. list

Teams/WP3/PIL/test

OIQ02
Inclusion: Qgen

code (Other_SW)
True See section 4.3.2.1

Annex A – Euclid
KPI results, DYN
stat. list

Teams/WP3/PIL/

/test/fpmrcs_mm

OIQ03
Qgen integration

into TASTE
True

Check if any Simulink model
was buildable with QGen from
TASTE

4.4.1.2 Teams/WP3/TASTE_output

OIQ04

number of
Simulink models
integrated into

TASTE

3
Number of models that were
successfully built on our VM

4.4.2.2 Teams/WP3/TASTE_output

OMQ01

number of
modelling tools
for Qgen code

generation

3
Number of tools necessary to
build Qgen code with the
TASTE pipeline

4.5.1.2 Teams/WP3/TASTE_output

OAS01
number of

support requests
to AdaCore

25
Number of tickets on the
ticket website

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

OAS02
AdaCore's

response time for
support requests

7.58 hours
Time delta between opening
and closing the ticket

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

OAS03
number of issues
and bugs sent to

AdaCore

3 minor, 1 major bug, 17
issues

Number of issues and bugs
sent

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

OAS04
number of days to

solve a bug by
AdaCore

avg. 17,177 days
Time between opening ticket
and message confirming
solving bug

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

https://gt3-prod-1.adacore.com/
https://gt3-prod-1.adacore.com/
https://gt3-prod-1.adacore.com/
https://gt3-prod-1.adacore.com/

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

DPI01
reduction of

development
effort

60%
Difference between
estimated efforts

Table 6 [RD12]

DPI02
reduction in
testing time

30%
Normalized difference
between estimated efforts

Table 6 [RD12]

ORS01

percentage of
modified blocks

for Qgen
compatibility

3%
Percentage of modified blocks
for Qgen compatibility

Table 8 Annex B – Models adaptation metrics

DQA01
number of models

used in project
33

Number of Qgen models used
in project development

Table 9 Annex B – Models adaptation metrics

DQA02
number of

Simulink elements
6005

Sum of numbers and signals in
used models

Table 8 Annex B – Models adaptation metrics

DQA03
effort to develop
Simulink models

5630 / 410 hours
Time development of Simulink
models

Overview list Annex A – Euclid KPI results,

DQA004
maximum

subsystem depth
5

Maximum subsystem depth
measured by MATLAB metrics

Table 8 Annex B – Models adaptation metrics

DQA005
maximum number
of basic Simulink

blocks
1386

Maximum number of basic
Simulink blocks.

Table 8 Annex B – Models adaptation metrics

DQA006
maximum number

of nested bus
structures

4, 0
Maximum number of nested
bus structures.

Table 8 Annex B – Models adaptation metrics

DQA007
code cyclomatic

complexity
7.68

Code cyclomatic complexity
measured through
SourceMonitor

D3.10 Annex B D3.10-SVR-AnnexB.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

DPI005

maximum number
of nested

statements in a
function

6
Maximum number of nested
statements in a function
measured with SourceMonitor

D3.10 Annex B D3.10-SVR-AnnexB.

DPI006
number of
statements

29541 Number of statements. D3.10 Annex B D3.10-SVR-AnnexB.

DSQ001

comment
frequency within

the generated
functions

27.4%
Proportion of comments
within the generated
functions.

D3.10 Annex B D3.10-SVR-AnnexB.

DPI007
number of lines of

generated code
per function

28.2

Number of lines of generated
code per function (including
comments but not including
blank spaces)

D3.10 Annex B D3.10-SVR-AnnexB.

DSQ002
coverage % of

branches during
SIL

96.14%
Coverage % of branches
during SIL unitary test using
gcov

D3.10 Annex C Teams/WP3/SIL/COV-RP.zip

DSQ003

coverage % of
function

statements during
SIL

96.11%
Coverage % of function
statements during SIL unitary
test using gcov

D3.10 Annex C Teams/WP3/SIL/COV-RP.zip

DSQ004
coverage % of

branches during
SIL

Duplicate of DSQ002 - -
-

DSQ005 coverage % of
function

Similar to DSQ003
Coverage % of function
statements during PIL unitary
test using gcov

N/A Teams/WP3/SIL/COV-RP.zip

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

statements during
PIL

DPI003
error tolerance in

the MIL
0.0E+00

Error tolerance in the MIL
validation environment with
respect to the reference Euclid
models.

D3.7.2 D3.5

DPI004
error tolerance in

the MIL-SIL
1.0E-15

Error tolerance in the MIL-SIL
validation environment with
respect to the MIL reference
values

D3.10 section
4.1

D3.10 MIL-SIL comparison zip

DSQ006
SIL test without

error
100%

Percentage of exercised SIL
test without error execution.

D3.10 section
4.1

Teams/WP3/SIL/COV-RP.zip

DSQ007
PIL test without

error
100%

Percentage of exercised PIL
test without error execution.

D3.10 section
5.2.1

Teams/WP3/PIL/test

 Table 7 KPI results summary

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5. UPMSAT2 KPI data
Another significant model in assessing the TRL evaluation of the QGen tool-set is the UPMSat-2 mission. UPMSat-
2 is a micro-satellite designed and developed by the IDR and STRAST research groups at the Universidad
Politécnica de Madrid (UPM) and it is in orbit since September 2020.

UPMSat-2 was developed for educational and technology demonstration purposes. Consequently, it includes
several experiments and subsystems such as the Attitude Control System (ACS) designed and validated by
aerospace and software engineers using the MATLAB and Simulink modelling tools. Specifically, The Simulink
Embedded Coder tool was used to transform the Simulink models into source code for later integration into the
OBSW. The validation and verification from these models and its autogenerated code was performed with
additional MATLAB and Simulink tool-boxes.

This evaluation is based on the Simulink models used for the UPMSat-2 ACS subsystems. These models were taken
as reference inputs for the QGen tools. In particular, the QGen code generator was used for the model to code
transformation and QGen Debugger for the SIL validations.

5.1. Introduction to the UPMSat-2 Attitude Control System
The UPMSat-2 ACS is in charge of the satellite’s attitude determination based on the magnetic interaction with
the Earth’s magnetic field and the one produced though magnetic torquers. The ACS sets the satellite rotation
rate controlled with a constant angular speed, and also maintains the vehicle’s attitude perpendicular to its orbit
plane, thereby the communication antenna is properly oriented to the Earth.

The satellite is equipped with three magnetometers (MGM) to measure the Earth’s magnetic field, each one
measuring in the three axes. Three magnetorquers (MGT), one per axis, are used to generate the required torque
for attitude control.

Figure 6 UPMSat-2 ACS software architecture depicts the high-level architecture from the ACS software
component, which includes three tasks and three shared resources accessed in mutual exclusion to allow the
communication between the real time tasks. The implementation corresponds to the classical control cycle:
sense, compute, and actuate. These three steps are decoupled in three different tasks: Measurer, Control, and

Actuator, respectively.

Figure 6 UPMSat-2 ACS software architecture

Measurer is a periodic task that reads five magnetic field measurements from the three magnetometers and

calculates their average. These values are then passed to the Control sporadic task though the Measurements

protected object.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

The Control task imports the autogenerated code from the “Control” Simulink model, explained in the next

subsection. It first reads the measurements and configuration parameters to the auto-coded control algorithm
and then passes the results to the Actuator sporadic task by means of the Actuation protected object.

Finally, the Actuator takes the actuation values for each axis and behaves accordingly. Such values represent the

Pulse Width Modulation (PWM) duty cycle for the three magnetorquers.

The behaviour of the Measurer and Control tasks is based on the configuration parameters contained in the

protected object under the same name. These parameters include the setpoint and calibration values for the
control algorithm and data acquisition. This allows external subsystems, such as TMTC (Telemetry and
Telecommand) or the OBSW manager, to configure the ACS behaviour dynamically.

5.2. UPMSat-2 ACS Simulink and TASTE models
This section is concerned with the Simulink models used for the control algorithm, and the TASTE project that
integrates the ACS architecture making use of its modelling elements. This integration serves as an evidence for
KPIs OIQ03 and OIQ02 discussed at section 5.3.

The software architecture for the ACS, presented in section 5.1, is based on the workflow from the MIL Simulink
models illustrated in Figure 7. The Sensor task performs the activities modelled in the Sensor block, i.e.: it reads
the magnetometer values periodically based on configurable parameters (green boxes). This relationship is
applicable also for the Control task and Algorithm block in the middle, and the Actuator task and PWM block on
the right.

Figure 7 MIL model for the UPMSat-2 ACS

Algorithm is the most interesting block for this assessment report because it has been integrated into the

UPMSat-2 OBSW with auto-coding tools, Embedded Coder. In this use case, we use QGen instead to autogenerate
the C source code from the Algorithm block. The autogenerated code is also verified with QGen Debugger, which

allows us to compare the difference between the MIL and SIL executions.

Figure 8 illustrates the internal elements from the Algorithm block, which conform a functional chain to process
the raw measurements and compute the required actuation. The Control law follows the mathematical equation

to compute the magnetic torquers. Then, these values are passed as the M output signal to If Fail Recalculate, an

FDIR module that behaves accordingly to the current operative magnetometers (MT_Working input parameter).

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Finally, these values are passed through for the limitation and discretization steps to transform the computed

torquers to digital values (PWM duty cycles in milliseconds).

Figure 8 UPMSat-2 Attitude control algorithm implemented in Simulink

As discussed above, our main concern for this use case is the ACS algorithm block. Consequently, we integrated
this model into a TASTE project taking advantage of the improvements and fixes applied to the TASTE tools
(namely: KAZOO, Data Modelling Tools, and Space Creator) during the development of AURORA WP5. This
integration mimics the ACS behaviour, although this has been achieved with a sequential approach rather than
concurrently with interconnected tasks.

Figure 9 TASTE Interface View for the UPMSat-2 ACS

Figure 9 shows the interface view from the ACS project in TASTE. The project is divided into two TASTE functions:
ACS at the top and Simulated ACS HW at the bottom. The latter is a C function that communicates with a Simulink

model similar to the one shown in Figure 8, but with the following modifications:

• The control block was removed, the goal is to import it into the TASTE model (explained later).
• The outputs from the Sensor block were connected to an asynchronous send TCP/IP Simulink block.

• The inputs from the PWM block were connected to an asynchronous receive TCP/IP Simulink block.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Thanks to this configuration, we could communicate our modified Simulink model (client) to the TASTE project
(server) by means of TCP/IP sockets. This modified model is referred to as SIL hereafter since it allows us to
execute the ACS algorithm independently from the Simulink environment. In addition, the Simulated ACS HW

component offers two unprotected interfaces: Read MGM to receive the simulated readings sent by the SIL

environment, and control MGT to send the calculated magnetorquer commands.

On the other hand, ACS acts as a composite TASTE function. This means that it serves as a façade or container for

other TASTE functions. Specifically, ACS is composed of ACS Algorithm and Measurer And Actuator as depicted

in the upper left corner of Figure 9. ACS is also connected to the two interfaces provided by Simulated ACS HW,

such connections are also visible to its two subcomponents as “required interfaces”.

Regarding the Measurer and Actuator, it gathers the three steps discussed earlier in section 5.1 into a single

element. In consequence, it must orchestrate and set the peace for these three activities, which is implemented
with the Tick cyclic interface. This interface is executed periodically by a dedicated thread. However, it does not
include the Control block because this activity is deferred to the ACS algorithm function.

ACS algorithm is a QGenC TASTE function. This means that it receives a Simulink model as the implementation

language and automatically generates C source code taking this model as input. In addition, the TASTE toolchain
facilitates the integration with QGen creating more elements such as: the code to interconnect the
autogenerated C code with the TASTE middleware, scripts to map the ASN.1 data types (defined in the data-view)
into Simulink data types, and Makefiles to automate the code generation process.

The connection between ACS algorithm and Measurer and Actuator is possible thanks to the Step connection.
Further information about this TASTE project has been documented in the guide for the QGen integration into
Space Creator, described in detail at [RD08].

5.3. Code interfaces

5.3.1. OIQ01 – Integration: Other_Sw(QGen_Code)

5.3.1.1. Measurement
The objective of this indicator is to evaluate the integrability of QGen autogenerated code into existing software
architectures. This enables the interoperability of QGen with other modelling tools and frameworks like TASTE, F
Prime, or CFs; and also enhances the applicability of QGen in the industry.

This is measured testing Simulink projects that test this functionality and analysing the autogenerated code. The

integrability of QGen mainly depends on its code generation strategy, but also on the tools and options that it
offers to automate this process.

5.3.1.2. Results
Code generators like Embedded Coder or QGen offer a well-defined interface to allow communication with other
systems or tools. For instance, the TASTE tool-chain supports software elements implemented in Simulink. To do
so, it generates code wrappers that enable the integration and interoperability of the code generated by
Embedded coder. This is possible because Embedded Coder follows patterns dependent on a “function
signature” that is also known by the TASTE code generators.

In general, the “TASTE/Simulink” approach can be followed. In the same way, existing software architectures
would only need an “adapter” module that, in the lowest level, invokes the generated C/Ada code by QGen. This
way, the autogenerated code is deferred from the core modules that contain the main logic.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

QGen autogenerated code offers one subprogram that implements the Simulink model behaviour, and contains
all the necessary data structures. The subprogram signature (name, formal parameters, and return type) is the
only interface that the caller (“adapter” module) needs to know in order to work with it.

Therefore, it is TRUE that QGen is integrable into existing software architectures.

5.3.1.3. Evidence
The evidence for this KPI are the implementations of both the UPMSat-2 ACS [RD09] and UPMSat-2 OBDH [RD10]
in TASTE/Space Creator.

5.3.2. OIQ02 – Inclusion: QGen_Code(Other_Sw)

5.3.2.1. Measurement
Like KPI OIQ01 (section 5.3.1), this KPI aims to evaluate the applicability and integrability of QGen in existing
software applications, but from a bidirectional perspective, i.e.: evaluate the ability of QGen to reuse other
software elements. This is measured testing Simulink projects that test this functionality.

5.3.2.2. Results
Currently, MATLAB offers S-functions blocks which allow Simulink models to import Matlab scripts, C, and Ada
source code. QGen supports the usage of the S-Functions blocks and many demonstration models/programs have
been developed to probe this functionality.

For instance, the figure depicted below illustrates a basic S-Function that performs the addition of two 32-bit
integers. The autogenerated code from that model was obtained with QGen and successfully tested and
integrated into the TASTE toolchain. Some issues were reported (and fixed by Ada Core) during this integration
process, especially those related to pointer types in the formal parameters.

Figure 10 Demo model for an S-Function with QGen

Therefore, it is TRUE that QGen can include external software elements.

5.3.2.3. Evidence
The evidence for this KPI are the TASTE projects and conventional (non-TASTE) projects that use S-Functions and
QGen for the code generation, these projects are not publicly available, contact the STRAST-UPM group for
further information.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.4. Taste

5.4.1. OIQ03 – Qgen integration into TASTE

5.4.1.1. Measurement
As the name implies, this KPI aims to evaluate the integration of QGen into the TASTE toolchain. This requires the
TASTE wrappers to understand the functions signature generated by QGen, and also to specify and know input
and output parameters passing strategy. These two aspects conform an interface implemented by the QGen
autogenerated code, and required by the TASTE autogenerated code.

5.4.1.2. Results
Currently, TASTE supports QGenC components but with a restricted component model, they can contain only
synchronous provided interfaces and no required interfaces. These restrictions apply also to the current Simulink
integration. In fact, the QGen/TASTE integration developed during the AURORA project is based on the
Embedded Coder/TASTE integration.

UPMSat-2 ACS model was successfully integrated into a TASTE project using QGenC as the code generator, this
is explained in detail in section 5.2.2. The core features implemented while doing this integration are:

• Automatic source code generation from QGen TASTE functions. Previously, the user had to manually invoke
QGenC; now TASTE invokes it automatically in such a way that the configuration for the generated code
could match the TASTE wrappers interface.

• Support for editing Simulink components from Space Creator. This includes QGenC and QGenAda functions
and allows the user to edit the underlying model in a similar way to SDL (Specification and Description
Language) models.

• Improvements in the code generation process. Specifically, we restricted the code generation only when
necessary. This is when the underlying Simulink model has been changed.

Therefore, it is TRUE that QGen is integrable into TASTE, but with some limitations.

5.4.1.3. Evidence
The features mentioned above are merged in the TASTE repository. The implementations of both the UPMSat-2
ACS [RD09] and UPMSat-2 OBDH [RD10] in TASTE/Space Creator demonstrate the usage of these features. The
ACS integration is explained in section 5.2

5.4.2. OIQ04 – number of Simulink models integrated into TASTE

5.4.2.1. Measurement
This KPI not only serves as an indicator, but also as an evidence for the KPI OIQ03 (c.f. section 5.4.1). If the result
of KPI OIQ03 is TRUE, this indicator helps to evaluate the complexity of the process of integrating Simulink/Qgen
applications into TASTE.

5.4.2.2. Results
Until now, we have successfully created 3 TASTE projects that make use of the Qgen generator:

1. UPMSat-2 ACS. This project includes the ACS Simulink model.
2. UPMSat-2 OBDH. This project incorporates the ACS model and the whole UPMSat-2 OBDH system.
3. Simple calculator. This project uses completely different Simulink model that includes an adder and

multiplier block. Although it is a straightforward model, it helped us to identify issues.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Although, the first and second models use the same ACS Simulink model, we have created two different TASTE
models, one more complex than the other. In addition, we have partitioned the whole ACS model into two
subsystems for the measuring and actuation. Therefore, it can be said that:

3 models were successfully integrated into TASTE.

5.4.2.3. Evidence
The evidence for this KPI are the implementations of both the UPMSat-2 ACS [RD09] and UPMSat-2 OBDH [RD10]
in TASTE/Space Creator. The simpler adder model is not publicly available yet. The ACS integration was previously
explained in section 5.2

5.5. Tools

5.5.1. OMQ01 – number of modelling tools for QGen code generation

5.5.1.1. Measurement
This indicator aims to estimate the support provided by Qgen for its use in software applications. The support is
measured in terms of the number of tools offered for the code generation process.

5.5.1.2. Results
Qgen offers three different way for the code generation process:

1. Via a combination of the system and the MATLAB interface (this method is used in TASTE).
2. Via the MatLab command Line interface.
3. Via the Simulink graphical user interface.

Therefore, there are 3 methods to use the Qgen code generator.

5.5.1.3. Evidence
These methods are explained in detail in the QGen user manual. Figure 11 was taken from this manual and shows
the three generation methods explained before.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Figure 11 Code generation methods forQGen, taken from the QGen user manual

5.6. AdaCore’s support
The indicators from this category are related to the support quality provided by AdaCore and they are common
for both EUCLID and UPMSat-2 projects. Therefore, the KPI results presented in section 4.6 are applicable to this
use case, too.

5.7. Effort
These indicators (DPI01 and DPI02) are not applicable to this use case. Much of the worked developed in this WP
include the models developed during the UPMSat-2 project, which took years to conceive.

5.8. Models

5.8.1. ORS01 – percentage of modified blocks for QGen compatibility

5.8.1.1. Measurement
The percentage of modified blocks of our ACS model was measured following the next formula:

% 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠 =
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑏𝑙𝑜𝑐𝑘𝑠

𝑏𝑙𝑜𝑐𝑘𝑠
∙ 100

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.8.1.2. Result
As discussed earlier, only one model was used for the UPMSat-2 use case. This model contains 305 basic blocks,
from which 7 were modified. All these changes were related to the usage of range expressions in selector blocks
and did not the affect the MIL behaviour, but the generated code was incorrect, affecting the behaviour during
the SIL testing. Therefore, a 2.29 % of the blocks were modified for QGen compatibility.

5.8.1.3. Evidence
The errors detected with the original model were reported in GNAT Tracker as a “major bug”. Further information
of this bug is gathered at tracking website https://gt3-prod-1.adacore.com/. However, it is available only to the
members of the SENER Aeroespacial account.

Figure 12 shows a screen-capture of the reported bug title and creation date.

Figure 12 Reported bug related to the modified blocks in in the ACS model

5.8.2. DQA01 – number of models used in project

5.8.2.1. Measurement
This indicator is determined by the total number of Simulink models used for the UPMSat-2 ACS.

5.8.2.2. Results
the UPMSat-2 ACS was evaluated using the whole model against one simulation of the environment and
equipment during a significant amount of time where the vehicle goes through different stages: detumbling,
orientation, and stabilization. Consequently, UPMSat-2 consists only of one model for the ACS.

5.8.2.3. Evidence
The UPMSat-2 ACS model is publicly available at the STRAST research group GitHub repositories [RD09, RD10].

5.8.3. DQA02 – number of Simulink elements

5.8.3.1. Measurement
This indicator calculates the structural complexity of a Simulink model which is determined by the number of

elements and the communication of these elements. To quantify this indicator, we have defined the following

terms:

• Basic block: Simulink block that is either part of the Simulink library or from an external one. E.g.: the gain

block.

• Connection: A signal that communicates two basic blocks through the input/output parameter pair.

The following trio of metrics help us to calculate the Complexity of a Simulink model:

Nb Number of basic blocks

Nc Number of connections between basic blocks

https://gt3-prod-1.adacore.com/.a

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Ne Number of Simulink elements. 𝑁𝑒 = 𝑁𝑏 + 𝑁𝑐

5.8.3.2. Results
The original ACS model used currently in orbit contains 250 Simulink blocks. The modified model for the support
of QGen uses the same number of blocks since it required few changes. These models contain 369 signals that
allow communication between the blocks. Therefore, we have:

𝑁𝑒 = 250 + 369 = 𝟔𝟏𝟗 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

5.8.3.3. Evidence
The UPMSat-2 ACS model is publicly available at the GitHub repository from the STRAST research group [RD11].

5.8.4. DQA03 – effort to develop Simulink models

5.8.4.1. Measurement
This KPI aims to estimate the time required to obtain deployable and production ready software from existing

Simulink models. In this case we are considering the ACS model from UPMSat-2.

Note that, the spent time for the creation of the evaluated Simulink model is not considered for these reasons:

• The development and implementation of Simulink models are always performed with the MathWorks

tools: Simulink and MatLab. The QGen toolset is of interest only during the model to code transformation,

and “In-The-Loop” validation processes.

• The complexity of a Simulink model is already determined by other KPIs based on the internal structure

and organization of such models. E.g., DQA02, DQA04, DQA05, and DQA06.

• The development of a Simulink model for the TRA is not within the objectives of AURORA, we proceed

on the basis of previous projects (UPMSat-2 and EUCLID) which took a significant period of time for the

creation and validation of its models.

5.8.4.2. Result
During the development of the UPMSat2 satellite, aerospace engineers designed the ACS models including those

required for their validation. During the AURORA project, software engineers have taken these models to perform

the following activities:

• Study and analyse the model internals.

• Study the QGen technologies including its code generator (QGenC) and verifier (QGen Debugger).

• Generate C code from these models and validate it.

• Throughout the generated code validation, some issues were found, which were reported to AdaCore and

required few modifications in the actual model (see section 4.6).

• Develop TASTE projects to mimic the behaviour of the UPMSat-2 OBDH and integrate its ACS.

All these activities took approximately 5 person-months to complete.

5.8.4.3. Evidence
The evidence for this indicator are the TASTE models, tutorials, and information videos published so far [[RD08],
RD09, RD10, RD11].

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.8.5. DQA004 – maximum subsystem depth

5.8.5.1. Measurement
Simulink models are functionally divided into different systems, which in turn are composed of nested subsystems
to ease readability and maintainability. The nesting levels are directly proportional to the complexity of the
developed system. Therefore, this indicator is used to estimate the complexity of the evaluated Simulink models.

5.8.5.2. Result
 The deepest Simulink blocks have 5 nesting levels and correspond to an FDIR subsystem from the ACS when one
magnetorquer is failing and two are working. The subsystem is located in the following absolute path:

Control/If Fail Recalculate/1 Fail/B Tot/Subsystem

5.8.5.3. Evidence
The UPMSat-2 ACS model is publicly available at the GitHub repository from the STRAST research group [RD11].
The maximum subsystem depth can be visually verified opening the Simulink model.

5.8.6. DQA005 – maximum number of basic Simulink blocks

5.8.6.1. Measurement
This KPI aims to estimate the complexity and maintainability of Simulink models based on the number of basic
blocks. If there are more than one Simulink projects in a use case, the maximum of the set of maximum values is
used.

5.8.6.2. Result
Two versions of the ACS models were used; the one that is currently used in orbit contains 250 Simulink blocks,
and the modified version contains the same number of blocks.

5.8.6.3. Evidence
The UPMSat-2 ACS model is publicly available at the GitHub repository from the STRAST research group [RD11].
The maximum number of basic blocks can be verified with specific MATLAB commands.

5.8.7. DQA006 – maximum number of nested bus structures

5.8.7.1. Measurement
This KPI aims to estimate the complexity and maintainability of Simulink models based on the maximum number
of nested bus structures.

5.8.7.2. Result
The UPMSat-2 ACS model does not contain any bus structure like bus creators or selectors. It only contains signals
with basic types such as floating point, or sequence of floating-point elements. Therefore, the result for this KPI
is: 0 nested buses.

5.8.7.3. Evidence
The UPMSat-2 ACS model is publicly available at the GitHub repository from the STRAST research group [RD11].
The maximum number of basic Simulink blocks can be visually verified opening the Simulink model.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.9. Code Metrics
All these metrics help to evaluate the code quality generated by Qgen compared to traditional methods (hand-
written code). All of them were analysed with the Source Monitor free software. The project was configured the
same way as for the EUCLID analysis (c.f. section 4.9). Figure 13 shows the Kiviat diagram for most of the metrics
discussed below, such as the average and maximum complexity.

Figure 13 Kiviat graph for the UPMSat-2 project

On the other hand, the table presented in Figure shows individual metrics per function, like the number of
statements, or the maximum depth. As can be seen, the most complex and largest function is
control_Reference_Model_comp, which implements the step function for the control algorithm, i.e. it receives

the inputs and return the output from the input and output Simulink ports, respectively.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Figure 14 Source Monitor metrics for all the autogenerated functions

5.9.1. DQA007 – code cyclomatic complexity

5.9.1.1. Measurement
This KPI aims to estimate the complexity and maintainability of Simulink/QGen models based on the average
cyclomatic complexity (CYC) of all the QGen autogenerated source code. The CYC represents the number of
linear-independent paths from the graph that models the structure of a given function.

A low CYC value represents a simple and readable function, which increases the effectiveness during the testing
phases. In the AURORA project, the upper limit value for the CYC is set to 10, based on the recommend value
from the MISRA-C coding standard. These metrics are obtained with the Source Monitor tool.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.9.1.2. Results
The following figure shows the CYC metrics and chart obtained from the QGen autogenerated code. The chart
on the left shows a range of complexity values on the X axis; and on the Y axis the number of functions whose
complexity is within that range. The figure on the right shows some of the functions and their CYC values.

By way of example, the most-right bar means that there is only one function with a CYC between 72 and 79, this
corresponds to the control_Reference_Model_comp function with a CYC of 72.

Figure 15 CYC results for UPMSat-2 ACS generated code

Based on the values presented in the above figure, we can conclude that the average CYC from all the
autogenerated functions is 5.42.

5.9.1.3. Evidence
The average CYC can be easily verified from the figure and table depicted in Figure 13 and Figure 14, respectively.

5.9.2. DPI005 – maximum number of nested statements in a function

5.9.2.1. Measurement
This indicator seeks to perform a comparison of the complexity of traditional development methods (hand-
written code) and QGen generated code. Usually, autogenerated software tends to be messy, as it does not have
to be read or corrected by human. This is applicable only to conventional software applications like websites, but
this is not allowed for high integrity applications (like space/flight software) which establish certain limits for code
quality metrics.

In this case, the maximum number of nested statements in a function provides a measurable value proportional
to the code complexity, thus, lower values are desirable.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.9.2.2. Results
The maximum number of statements is 3 and corresponds to functions: Fails_X_comp, Fails_Y_comp, and

Fails_Z_comp. These three functions map to blocks located inside the “IF Fail Recalculate” Simulink subsystem

(c.f. Figure 8). The chart bar depicted in Figure 16 shows the maximum depths on the X axis, and the number of
functions with that depth in the Y axis. As you can see, 3 is the “maximum depth” value with more than 0
occurrences.

Figure 16 Nested statements (max depth) diagram

5.9.2.3. Evidence
This KPI can be easily verified from the table depicted in Figure 16, and graphically inspected in Figure 17.

5.9.3. DPI006 – number of statements

5.9.3.1. Measurement
This indicator and DPI05 share the same objective, comparing traditional hand-written code and QGen
autogenerated code, considering the total number of statements from each project. This value can be
automatically obtained with the Source Monitor tool.

5.9.3.2. Results
In total, there are 888 statements. The following chart bar presents a range of “number of statements” values on
the X axis; and on the Y axis the number of functions whose “number of statements” is within that range.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Figure 17 Statements bar chart produced by Source Monitor.

5.9.3.3. Evidence
The “number of statements” can be easily verified from the table depicted in Figure 16, and graphically inspected
in Figure 17.

5.9.4. DSQ001 – comment frequency within the generated functions

5.9.4.1. Measurement
This indicator and DPI05 (c.f. section 6.2.12) share the same objective, comparing traditional hand-written code
with QGen autogenerated code. But it also helps to estimate the dependability and reliability of QGen
applications. To do so, the following formula shall be used:

𝐶𝑜𝑚𝑒𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑐𝑜𝑚𝑚𝑒𝑛𝑡 𝑙𝑖𝑛𝑒𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 ℎ𝑒𝑎𝑑𝑒𝑟𝑠

𝐿𝑂𝐶𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑏𝑙𝑎𝑛𝑘𝑠

Source code comments are a controversial issue in software engineering. The truth is that in the realm of auto-
generated software, comments significantly enhance readability mainly for these reasons:

• Autogenerated software does not suffer the outdated comments problems since they are always
updated when the associated source text is changed.

• Autogenerated code tends to be complex, in those cases, comments can help to emphasize the code
structure. Although, there is nothing better than small functions or easy to read code.

• Comments help to provide additional information that cannot be expressed in the C or Ada language.
Especially, the mapping between the Simulink modelling elements with the actual code.

5.9.4.2. Results
In total there is a comment frequency of 55.10 %.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.9.4.3. Evidence
This data was automatically calculated by the Source Monitor tool and is included in the Kiviat graph (c.f. Figure
13).

5.9.5. DPI007 – number of lines of generated code per function

5.9.5.1. Measurement
This indicator and DPI05 (c.f. section 6.2.12) share the same objective, to compare traditional hand-made code
and QGen autogenerated code. But it also helps to estimate the increase of software productivity based on auto-
code applications.

This indicator is obtained from the number of LOCs (Lines Of Code) generated per function, including comments
but not including blank spaces. Since there are many functions per module and per project, the average shall be
considered. This value can be automatically obtained with the Source Monitor tool

5.9.5.2. Result
In average there are 21.2 LOC/function.

5.9.5.3. Evidence
This data, as all the other KPI values from this section, was obtained from the Source Monitor tool. The statements
per function are depicted in Figure 14 and Figure 17. The actual result (21.2 LOC/function) is shown in the Kiviat
graph (Figure 13).

5.10. Coverage
All the coverage data in this chapter were obtained by running the tests on an Ubuntu 2020.04.1 machine. The
QGen generated code was compiled and run on this machine for the SIL testing. Although, the code coverage
was not performed on a TSIM3 emulator, its results are assumed to be the same as the coverage during SIL.
Consequently, only DSQ002 and DSQ003 KPIs are discussed.

Data were gathered via gcov and lcov tools, and transformed to html reports using genhtml tool. Multiple runs

were executed for 10 test cases, their individual coverage reports were merged into a single report with LCOV
and it is depicted in Figure .

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Figure 18 Code coverage report after the SIL execution (in a PC platform)

As can be seen in Figure , there is a good coverage for the generated code after running all the test cases.
Individually, these test cases cover only some parts of the autogenerated code, but together, they cover almost
all the generated code. This is because the UPMSat-2 ACS has an FDIR module named “IF Fail Recalculate” which

considers three cases:

1. None magnetorquer fails: This case is modeled in the “None Fail” Simulink subsystem and it is entered

when all MGTs can be used. Then, this block is just a by-pass which does not modify the signals.
Only a single test is performed for this test case.

2. One magnetorquer fails: This case is modeled in the “1 Fail” Simulink subsystem and it is entered when

two MGMs can be used. Then, the MGT that fails is processed. This is implemented by the fails_x, fails_y,

and fails_z C modules, which represent a failure in the MGT oriented to the specified axis (X, Y or Z). Three

different tests were performed for this test case, one per failing magnetorquer).
3. Two magnetorquers fail: This case is entered two MGTs are failing and is modeled in the 2 Fails models.

This is considered a “degraded” mode for the ACS since there are actuations only on one axis.
Three different tests were performed for this test case, one for a failure in the X & Y; X & Z; and Y & Z MGTs.

Together, the 10 tests consider all these cases, achieving a high coverage percentage (greater than 93.5%). The
low coverage in the individual test cases is due the fact that we have only one Simulink model, then, the
autogenerated code maps to every subsystem, even though some of them are not used in a test case. It should
be noted that these metrics not only evaluate the quality of the generated code, but also the quality of our test
cases. The individuals and merged coverage are summarized in Table 1.

Test Case Description Code Coverage

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Statements Functions Branches

None MGT Fails
All magnetorquers (MGT) are working
correctly

58,90% 71,00% 56,60%

X MGT Fails
All except the X-axis MGT are working
correctly

76,30% 80,60% 73,80%

Y MGT Fails
All except the Y-axis MGT are working
correctly

76,80% 80,60% 73,10%

Z MGT Fails
All except the Z-axis MGT are working
correctly

81,20% 88,50% 69,00%

X, Y MGT Fail Only the Z-axis MGT is working correctly 61,80% 71,00% 57,20%

X, Z MGT Fail Only the Y-axis MGT is working correctly 61,80% 71,00% 57,20%

Y, Z MGT Fail Only the X-axis MGT is working correctly 61,80% 71,00% 57,20%

Merged coverage: 97,90% 93,50% 95,20%

Table 1 Code coverage for the individual and merged tests.

5.10.1. DSQ002 – coverage % of branches during SIL

5.10.1.1. Measurement
Branch coverage is the percentage of branches taken from all branches in the code. For our model, all files
generated by QGenC were monitored, and their branch coverage was averaged.

5.10.1.2. Result
Considering the merged results from our 10 test cases, the average branch coverage is 95.2%.

5.10.1.3. Evidence
The code coverage report is presented in Figure . The repository which gathers this coverage analysis is hosted in
a private server, please contact with the STRAST research group for further information.

5.10.2. DSQ003 – coverage % of function statements during SIL

5.10.2.1. Measurement
Function coverage is a percentage of statements hit from all the statements in the code. For our model, all files
generated by QGenC were monitored, and their branch coverage was averaged.

5.10.2.2. Result
Considering the merged results from our 10 test cases, the function coverage for this test case is 97.9%.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.10.2.3. Evidence
The code coverage report is presented in Figure . The repository which gathers this coverage analysis is hosted
in a private server, please contact with the STRAST research group for further information.

5.11. Tests
These indicators evaluate the correctness of the code generated by QGen performing MIL and SIL testing. In the
case of the SIL and PIL testing, we follow this strategy:

1. QGenC is invoked passing the actual model as an input.

2. The code is executed in a processor simulator, LEON-2 for EUCLID and LEON-3 for UPMSat-2.

3. The inputs generated during the MIL testing are recorded and passed to the generated code.

4. The outputs obtained during the previous step are compared against the outputs obtained during the
MIL testing.

The QGen Debugger tool facilitates the whole process since it automatically generated “testing code” that
performs all these steps. In the case of the SIL testing, the program run on the TASTE Virtual Machine (Debian
Bullseye). This “testing code” makes use of the file system services to read and write the input and expected
values vectors.

However, these filesystem services are not available for PIL testing which run on the LEON-3 simulators. That is
why, the “testing code” generated by QGen was significantly modified to redirect the output writings to the
standard output. The expected outputs and input values vectors were embedded as a C module (.c/.h) holding

one matrix; this strategy is used also in the Simulink SIL and PIL simulation tools from MathWorks.

All the tests performed with QGen Debugger have been configured with a tolerance of 0.00E+00.

5.11.1. DPI003 – error tolerance in the MIL

5.11.1.1. Measurement
This KPI is related to the correctness of the C code generated by QGen. This value is inferred from the deviation
between the MIL (Model-In-the-Loop) validation environment and the reference EUCLID models. In essence, the
MIL technique tests a model developed in Matlab/Simulink taking inputs and giving outputs from/to a test
harness developed in another modelling language (Simulink in this case) to simulate the execution and physical
environment.

5.11.1.2. Results
There was no difference between the MIL models used by QGen and Embedded Coder for the following reasons:

• The simulated environment from the UMSat-2 ACS was implemented in Simulink and it was not changed

for the validation of the ACS model modified for the QGen code generation.

• Although the changes applied to the ACS model produced key changes in the QGen code behavior, the
model’s behaviour remained unchanged because the updated blocks were modified, but not replaced.
Additionally, these changes were related to the usage of range expressions in selector blocks and did not
affect the MIL behaviour.

So, it can be said that there is no deviation in the MIL validation.

5.11.1.3. Evidence
The UPMSat-2 ACS model is publicly available at the GitHub repository from the STRAST research group [RD11].

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.11.2. DPI004 – error tolerance in the MIL-SIL

5.11.2.1. Measurement
This indicator and the one described before (KPI DPI03) share the same objective, determine the correctness of
the C code generated by QGen.

5.11.2.2. Results
As stated before in the description, this testing was performed in a LEON-3 simulator since the UPMSat-2 OBC is
a LEON-3 processor with SPARCv8 architecture. We have performed ten tests with 5000 inputs each and
0.00E+00 tolerance, of which 16 have failed, so it is considered partially passed. The effectiveness of this test is
calculated as follows:

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑈𝑃𝑀𝑆𝑎𝑡2 =
5000 × 10 − (9 + 6)

5000 × 10
∙ 100 = 𝟗𝟗. 𝟗𝟕 %

In addition, visual inspection has been performed during the SIL testing, this allowed use to visually determine
the angular velocity evolution on the 3-axes, the results were identical to the MIL testing since the angular velocity
converged to the established set-points.

5.11.2.3. Evidence
The SIL and PIL projects are hosted on a private repository. For more details contact the STRAST research group
from UPM.

5.11.3. DSQ006 – SIL test without error

5.11.3.1. Measurement
This indicator is related to DPI004 since it shares the same objective and uses the same QGen Debugger project.
This KPI depends on the effectiveness of the performed SIL test obtained in DPI004 (section 5.11.2). Possible
values for this KPI range from 0 to 10.

5.11.3.2. Results
As previously presented in the Code Coverage section, there are ten single tests that cover the three equivalence
classes 1, 2, and 3. Each test contains 5000 inputs, from which 9 points failed in the “none mgt fail” test case, and

6 points in the “x mgt fails” test case. This is considered to be successful since it performed as expected in 99.96%

of the test points. Therefore, it can be said that we have performed 10 tests without errors.

5.11.3.3. Evidence
The SIL and PIL projects are hosted on a private repository. For more details contact the STRAST research group
from UPM.

5.11.4. DSQ007 – PIL test without error
The value for this indicator is the result from the execution of the test created for the SIL project, but deployed
on a LEON3 simulator. The results were exactly the same as in the SIL testing, 99.97 % of effectiveness for the
performed test.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

5.12. UPMSAT2 KPI data Summary

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

OIQ01
Integration:

Other_SW (Qgen
code)

True
Observable characteristics of
code

Section 5.3.1 Teams/WP3/PIL/test

OIQ02
Inclusion: Qgen

code (Other_SW)
True See section 4.3.2.1 Section 5.3.2

Teams/WP3/PIL/

/test/fpmrcs_mm

OIQ03
Qgen integration

into TASTE
True

Creation of TASTE projects
that integrate QGen
components.

Section 5.4.1
Implementations of UPMSat-2 ACS
[RD09] and UPMSat-2 OBDH [RD10]
in TASTE/Space Creator.

OIQ04

number of
Simulink models
integrated into

TASTE

3
Creation of TASTE projects
that integrate QGen
components.

Section 5.4.2
Implementations of UPMSat-2 ACS
[RD09] and UPMSat-2 OBDH [RD10]
in TASTE/Space Creator.

OMQ01

number of
modelling tools
for Qgen code

generation

3
Methods available for the
QGen code generation.

Section 5.5.1 QGen user manual, c.f. section 5.5.1.3

OAS01
number of

support requests
to AdaCore

25
Number of tickets on the
ticket website

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

OAS02
AdaCore's

response time for
support requests

7.58 hours
Time delta between opening
and closing the ticket

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

OAS03
number of issues
and bugs sent to

AdaCore

3 minor, 1 major bug, 17
issues

Number of issues and bugs
sent

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

https://gt3-prod-1.adacore.com/
https://gt3-prod-1.adacore.com/
https://gt3-prod-1.adacore.com/

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

OAS04
number of days to

solve a bug by
AdaCore

avg. 17,177 days
Time between opening ticket
and message confirming
solving bug

Annex A – Euclid
KPI results,
AdaCore list

https://gt3-prod-1.adacore.com/

DPI01
reduction of

development
effort

N/A N/A N/A N/A

DPI02
reduction in
testing time

N/A N/A N/A N/A

ORS01

percentage of
modified blocks

for Qgen
compatibility

2.29%
Percentage of modified blocks
for Qgen compatibility

Section 5.8.1 KPI_Results_UPM_table.ods

DQA01
number of models

used in project
1

Number of Qgen models used
in project development

Section 5.8.2
KPI_Results_UPM_table.ods and

public repository [RD11]

DQA02
number of

Simulink elements
619

Sum of # of basic blocks and
their connections.

Section 5.8.6
KPI_Results_UPM_table.ods and

public repository [RD11]

DQA03
effort to develop
Simulink models

5 * 160 = 800 hours
Time development of Simulink
models. Described in section
5.8.4.1.

Section 5.8.4 KPI_Results_UPM_table.ods

DQA004
maximum

subsystem depth
5

Maximum subsystem depth
measured manually and
visually verified.

Section 5.8.5
KPI_Results_UPM_table.ods and

public repository [RD11]

DQA005
maximum number
of basic Simulink

blocks
250

Maximum number of basic
Simulink blocks.

Section 5.8.6
KPI_Results_UPM_table.ods and

public repository [RD11]

https://gt3-prod-1.adacore.com/

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

DQA006
maximum number

of nested bus
structures

0
Maximum number of nested
bus structures.

Section 5.8.7
KPI_Results_UPM_table.ods and

public repository [RD11]

DQA007
code cyclomatic

complexity
5.42

Code cyclomatic complexity
measured through
SourceMonitor

Section 5.9.1
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DPI005

maximum number
of nested

statements in a
function

3
Maximum number of nested
statements in a function
measured with SourceMonitor

Section 5.9.2
KPI_Results_UPM_table.ods public
[RD11] and private repositories.

DPI006
number of
statements

888 Number of statements. Section 5.9.3
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DSQ001

comment
frequency within

the generated
functions

55.1%
Proportion of comments
within the generated
functions.

Section 5.9.4
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DPI007
number of lines of

generated code
per function

21.2

Number of lines of generated
code per function (including
comments but not including
blank spaces)

Section 5.9.5
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DSQ002
coverage % of

branches during
SIL

95.20%
Coverage % of branches
during SIL unitary test using
gcov

Section 5.10.1
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DSQ003

coverage % of
function

statements during
SIL

97.90%
Coverage % of function
statements during SIL unitary
test using gcov

Section 5.10.2
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

ID Name Result Procedure description Evaluation result Evidence location

DSQ004
coverage % of

branches during
SIL

Duplicate of DSQ002 - - -

DSQ005

coverage % of
function

statements during
PIL

Similar to DSQ003
Coverage % of function
statements during PIL unitary
test using gcov

N/A
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DPI003
error tolerance in

the MIL
0.0E+00, N/A

Error tolerance in the MIL
validation environment with
respect to the reference Euclid
models.

D3.7.2
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DPI004
error tolerance in

the MIL-SIL
99.97 % of effectiveness with

0.0 tolerance for error.

Error tolerance in the MIL-SIL
validation environment with
respect to the MIL reference
values

Section 5.11.1
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DSQ006
SIL test without

error
100%

Percentage of exercised SIL
test without error execution.

Section 5.11.2
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

DSQ007
PIL test without

error
100%

Percentage of exercised PIL
test without error execution.

Section 5.11.3
KPI_Results_UPM_table.ods, public
[RD11] and private repositories.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Annex A – Euclid KPI results
The attached file includes the measured KPI results. How the results were obtained is described in the Euclid KPI
data chapter.

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Annex B – Models adaptation metrics

metric

Modified
blocks

Maximum
subsystem
depth

Maximum number of
basic Simulink blocks

Maximum number of
nested bus structures

Deviation from
reference
models

Result 3% 5 1386 4 0

Table 8 Summary of QGen model adaptation metrics

Simulink model
Modified

blocks
% Model
modified

Subsystem
depth

Number
of basic
Simulink

blocks

Number
of

signals

Number
of

elements
(blocks +
signals)

Number
of nested

bus
structures

Deviation
from

reference
models

sam 2 1,980% 2 101 138 239 3 0

sam_acm_rcs_seq 0 0,000% 0 10 9 19 0 0

sam_acm_rcs_seq_aux 0 0,000% 0 12 17 29 0 0

sam_acm_rcs_seq_pt1 22 12,717% 2 173 164 337 0 0

sam_acm_rcs_seq_pt2 6 2,419% 2 248 228 476 0 0

sam_ctrl 5 4,673% 1 107 92 199 1 0

sam_ctrl_at 4 4,255% 2 94 77 171 0 0

sam_ctrl_dz 3 6,667% 2 45 35 80 0 0

sam_ctrl_rd 0 0,000% 1 49 38 87 0 0

sam_ctrl_sa 10 5,495% 3 182 167 349 0 0

sam_mm 6 5,085% 1 118 94 212 0 0

sam_nav_sun 8 0,625% 1 1281 1086 2367 0 0

fpmrcs 2 1,235% 2 162 188 350 4 0

fpmrcs_mm 1 1,250% 0 80 83 163 0 0

fpmrcs_nm 0 0,000% 0 47 46 93 3 0

fpmrcs_nm_ctrl 15 11,811% 1 127 138 265 0 0

fpmrcs_nm_gui 3 2,256% 1 133 121 254 2 0

fpmrcs_nm_gui_ls_gui 34 2,453% 5 1386 1367 2753 0 0

ocm 12 4,255% 2 282 361 643 4 0

ocm_acm_rcs 0 0,000% 0 18 16 34 1 0

ocm_acm_rcs_orb 6 3,191% 2 188 171 359 0 0

ocm_ctrl 0 0,000% 0 15 15 30 1 0

ocm_ctrl_cl 26 12,150% 2 214 242 456 0 0

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Simulink model
Modified

blocks
% Model
modified

Subsystem
depth

Number
of basic
Simulink

blocks

Number
of

signals

Number
of

elements
(blocks +
signals)

Number
of nested

bus
structures

Deviation
from

reference
models

ocm_ctrl_ff 0 0,000% 2 150 136 286 0 0

ocm_dvto 0 0,000% 1 64 62 126 0 0

ocm_gui 10 10,526% 2 95 84 179 0 0

ocm_hmng 0 0,000% 0 43 53 96 2 0

ocm_hmng_bias 0 0,000% 1 36 27 63 1 0

ocm_hmng_bias_ctrl 2 2,174% 1 92 91 183 0 0

ocm_hmng_bias_flg 0 0,000% 0 31 25 56 0 0

ocm_hmng_null 0 0,000% 1 70 60 130 0 0

ocm_mm 1 2,500% 0 40 34 74 0 0

ocm_nav_dv 6 1,923% 3 312 271 583 0 0

Table 9 QGen model adaptation metrics

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Annex C – UPMSat-2 PIL & SIL test and coverage results

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

AUR-ESC-RP-0014

2.2

02/06/2023

Test Case Description
SIL Tests PIL Test Code Coverage

Effectiveness Result Effectiveness Result Statements Functions Branches

None MGT

Fails

All magnetorquers (MGT) are
working correctly

99,82%
PASSED
(9 failed)

99,82%
PASSED
(9 failed)

58,90% 71,00% 56,60%

X MGT Fails
All except the X-axis MGT are
working correctly

99,88%
PASSED
(6 failed)

99,88%
PASSED
(6 failed)

76,30% 80,60% 73,80%

Y MGT Fails
All except the Y-axis MGT are
working correctly

100,00% PASSED 100,00% PASSED 76,80% 80,60% 73,10%

Z MGT Fails
All except the Z-axis MGT are
working correctly

100,00% PASSED 100,00% PASSED 81,20% 88,50% 69,00%

X, Y MGT Fail
Only the Z-axis MGT is working
correctly

100,00% PASSED 100,00% PASSED 61,80% 71,00% 57,20%

X, Z MGT Fail
Only the Y-axis MGT is working
correctly

100,00% PASSED 100,00% PASSED 61,80% 71,00% 57,20%

Y, Z MGT Fail
Only the X-axis MGT is working
correctly

100,00% PASSED 100,00% PASSED 61,80% 71,00% 57,20%

Total: 99,96% PASSED 99,96% PASSED 97,90% 93,50% 95,20%

 In average Merged coverage

Table 2 Test results after PIL and SI

D6.2 Evidences for the assessment report

© AURORA Consortium, 2023 PUBLIC

	1. Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Contents

	2. Related Documents
	2.1. Applicable documents
	2.2. Reference documents
	2.3. Acronyms
	2.4. Terms and definitions

	3. Overview
	4. Euclid KPI data
	4.1. Introduction to the Euclid Attitude and Orbit Control System
	4.2. Euclid Simulink and TASTE models
	4.3. Code interfaces
	4.3.1. OIQ01 – Integration: Other_Sw(QGen_Code)
	4.3.1.1. Measurement
	4.3.1.2. Results
	4.3.1.3. Evidence

	4.3.2. OIQ02 – Inclusion: QGen_Code(Other_Sw)
	4.3.2.1. Measurement
	4.3.2.2. Results
	4.3.2.3. Evidence

	4.4. Taste
	4.4.1. OIQ03 – QGen integration into TASTE
	4.4.1.1. Measurement
	4.4.1.2. Results
	4.4.1.3. Evidence

	4.4.2. OIQ04 – number of Simulink models integrated into TASTE
	4.4.2.1. Measurement
	4.4.2.2. Results
	4.4.2.3. Evidence

	4.5. Tools
	4.5.1. OMQ01 – number of modelling tools for QGen code generation
	4.5.1.1. Measurement
	4.5.1.2. Results
	4.5.1.3. Evidence

	4.6. AdaCore’s support
	4.6.1. OAS01 – number of support requests to AdaCore
	4.6.1.1. Measurement
	4.6.1.2. Results
	4.6.1.3. Evidence

	4.6.2. OAS02 – AdaCore’s response time for support requests
	4.6.2.1. Measurement
	4.6.2.2. Results
	4.6.2.3. Evidence

	4.6.3. OAS03 – number of issues and bugs sent to AdaCore
	4.6.3.1. Measurement
	4.6.3.2. Results
	4.6.3.3. Evidence

	4.6.4. OAS04 – number of days to solve a bug by AdaCore
	4.6.4.1. Measurement
	4.6.4.2. Results
	4.6.4.3. Evidence

	4.7. Effort
	4.7.1. DPI01 – reduction of development effort
	4.7.1.1. Measurement
	4.7.1.2. Result
	4.7.1.3. Evidence

	4.7.2. DPI02 – reduction in testing time
	4.7.2.1. Measurement
	4.7.2.2. Result
	4.7.2.3. Evidence

	4.8. Models
	4.8.1. ORS01 – percentage of modified blocks for QGen compatibility
	4.8.1.1. Measurement
	4.8.1.2. Result
	4.8.1.3. Evidence

	4.8.2. DQA01 – number of models used in project
	4.8.2.1. Measurement
	4.8.2.2. Result
	4.8.2.3. Evidence

	4.8.3. DQA02 – number of Simulink elements
	4.8.3.1. Measurement
	4.8.3.2. Result
	4.8.3.3. Evidence

	4.8.4. DQA03 – effort to develop Simulink models
	4.8.4.1. Measurement
	4.8.4.2. Result
	4.8.4.3. Evidence

	4.8.5. DQA004 – maximum subsystem depth
	4.8.5.1. Measurement
	4.8.5.2. Result
	4.8.5.3. Evidence

	4.8.6. DQA005 – maximum number of basic Simulink blocks
	4.8.6.1. Measurement
	4.8.6.2. Result
	4.8.6.3. Evidence

	4.8.7. DQA006 – maximum number of nested bus structures
	4.8.7.1. Measurement
	4.8.7.2. Result
	4.8.7.3. Evidence

	4.9. Code Metrics
	4.9.1. DQA007 – code cyclomatic complexity
	4.9.1.1. Measurement
	4.9.1.2. Results
	4.9.1.3. Evidence

	4.9.2. DPI005 – maximum number of nested statements in a function
	4.9.2.1. Measurement
	4.9.2.2. Results
	4.9.2.1. Evidence

	4.9.3. DPI006 – number of statements
	4.9.3.1. Measurement
	4.9.3.2. Results
	4.9.3.3. Evidence

	4.9.4. DSQ001 – comment frequency within the generated functions
	4.9.4.1. Measurement
	4.9.4.2. Results
	4.9.4.3. Evidence

	4.9.5. DPI007 – number of lines of generated code per function
	4.9.5.1. Measurement
	4.9.5.2. Result
	4.9.5.3. Evidence

	4.10. Coverage
	4.10.1. DSQ002 – coverage % of branches during SIL
	4.10.1.1. Measurement
	4.10.1.2. Result
	4.10.1.3. Evidence

	4.10.2. DSQ003 – coverage % of function statements during SIL
	4.10.2.1. Measurement
	4.10.2.2. Result
	4.10.2.3. Evidence

	4.10.3. DSQ004 – coverage % of branches during SIL
	4.10.4. DSQ005 – coverage % of function statements during PIL

	4.11. Tests
	4.11.1. DPI003 – error tolerance in the MIL
	4.11.1.1. Measurement
	4.11.1.2. Results
	4.11.1.3. Evidence

	4.11.2. DPI004 – error tolerance in the MIL-SIL
	4.11.2.1. Measurement
	4.11.2.2. Results
	4.11.2.3. Evidence

	4.11.3. DSQ006 – SIL test without error
	4.11.3.1. Measurement
	4.11.3.2. Results
	4.11.3.3. Evidence

	4.11.4. DSQ007 – PIL test without error
	4.11.4.1. Measurement
	4.11.4.2. Results
	4.11.4.3. Evidence

	4.12. Euclid KPI data Summary

	5. UPMSAT2 KPI data
	5.1. Introduction to the UPMSat-2 Attitude Control System
	5.2. UPMSat-2 ACS Simulink and TASTE models
	5.3. Code interfaces
	5.3.1. OIQ01 – Integration: Other_Sw(QGen_Code)
	5.3.1.1. Measurement
	5.3.1.2. Results
	5.3.1.3. Evidence

	5.3.2. OIQ02 – Inclusion: QGen_Code(Other_Sw)
	5.3.2.1. Measurement
	5.3.2.2. Results
	5.3.2.3. Evidence

	5.4. Taste
	5.4.1. OIQ03 – Qgen integration into TASTE
	5.4.1.1. Measurement
	5.4.1.2. Results
	5.4.1.3. Evidence

	5.4.2. OIQ04 – number of Simulink models integrated into TASTE
	5.4.2.1. Measurement
	5.4.2.2. Results
	5.4.2.3. Evidence

	5.5. Tools
	5.5.1. OMQ01 – number of modelling tools for QGen code generation
	5.5.1.1. Measurement
	5.5.1.2. Results
	5.5.1.3. Evidence

	5.6. AdaCore’s support
	5.7. Effort
	5.8. Models
	5.8.1. ORS01 – percentage of modified blocks for QGen compatibility
	5.8.1.1. Measurement
	5.8.1.2. Result
	5.8.1.3. Evidence

	5.8.2. DQA01 – number of models used in project
	5.8.2.1. Measurement
	5.8.2.2. Results
	5.8.2.3. Evidence

	5.8.3. DQA02 – number of Simulink elements
	5.8.3.1. Measurement
	5.8.3.2. Results
	5.8.3.3. Evidence

	5.8.4. DQA03 – effort to develop Simulink models
	5.8.4.1. Measurement
	5.8.4.2. Result
	5.8.4.3. Evidence

	5.8.5. DQA004 – maximum subsystem depth
	5.8.5.1. Measurement
	5.8.5.2. Result
	5.8.5.3. Evidence

	5.8.6. DQA005 – maximum number of basic Simulink blocks
	5.8.6.1. Measurement
	5.8.6.2. Result
	5.8.6.3. Evidence

	5.8.7. DQA006 – maximum number of nested bus structures
	5.8.7.1. Measurement
	5.8.7.2. Result
	5.8.7.3. Evidence

	5.9. Code Metrics
	5.9.1. DQA007 – code cyclomatic complexity
	5.9.1.1. Measurement
	5.9.1.2. Results
	5.9.1.3. Evidence

	5.9.2. DPI005 – maximum number of nested statements in a function
	5.9.2.1. Measurement
	5.9.2.2. Results
	5.9.2.3. Evidence

	5.9.3. DPI006 – number of statements
	5.9.3.1. Measurement
	5.9.3.2. Results
	5.9.3.3. Evidence

	5.9.4. DSQ001 – comment frequency within the generated functions
	5.9.4.1. Measurement
	5.9.4.2. Results
	5.9.4.3. Evidence

	5.9.5. DPI007 – number of lines of generated code per function
	5.9.5.1. Measurement
	5.9.5.2. Result
	5.9.5.3. Evidence

	5.10. Coverage
	5.10.1. DSQ002 – coverage % of branches during SIL
	5.10.1.1. Measurement
	5.10.1.2. Result
	5.10.1.3. Evidence

	5.10.2. DSQ003 – coverage % of function statements during SIL
	5.10.2.1. Measurement
	5.10.2.2. Result
	5.10.2.3. Evidence

	5.11. Tests
	5.11.1. DPI003 – error tolerance in the MIL
	5.11.1.1. Measurement
	5.11.1.2. Results
	5.11.1.3. Evidence

	5.11.2. DPI004 – error tolerance in the MIL-SIL
	5.11.2.1. Measurement
	5.11.2.2. Results
	5.11.2.3. Evidence

	5.11.3. DSQ006 – SIL test without error
	5.11.3.1. Measurement
	5.11.3.2. Results
	5.11.3.3. Evidence

	5.11.4. DSQ007 – PIL test without error

	5.12. UPMSAT2 KPI data Summary

	Annex A – Euclid KPI results
	Annex B – Models adaptation metrics
	Annex C – UPMSat-2 PIL & SIL test and coverage results

Overview

						Category		Code		Brief description				Reference		Comment		SENER Comment

						Code interfaces		OIQ01		Integration: Other_Sw(QGen_Code)

								OIQ02		Inclusion: QGen_Code(Other_Sw)

						taste		OIQ03		QGen integration into TASTE				WP5?				Completed

								OIQ04		Num. of simulink models integrated into TASTE				not started yet				Completed

						tools		OMQ01		Num. of modelling tools for QGen code generation

						AdaCore's		OAS01		Num. of support requests to AdaCore				[2]

						support		OAS02		AdaCore's response time for support requests				[2]

								OAS03		Number of issues and bugs sent to AdaCore				[2]

								OAS04		Number of days to solve a bug by AdaCore				[2]

						effort		DPI01		reduction of development effort 				TBD		TBC How it shall be termined?		On-going

								DPI02		reduction in testing time				TBD		TBC How it shall be termined?		On-going

								ORS01		Percentage of modified blocks for QGen compatibility				[1]

						models		DQA01		Number of models used in project 				[1]

								DQA02		number of Simulink elements				[1]				Check update at AURORA_ProjectManagement_GeA_Progress_Reporting.xlsx

								DQA03		effort to develop Simulink models				TBD		TBC How it shall be termined?		Effort dedicated to Simulink Modellig in EUCLID: 5220 hours
Models adaptation to QGEN in AURORA: 410 hours

								DQA004		Maximum subsystem depth				[1]

								DQA005		Maximum number of basic Simulink blocks				[1]

								DQA006		Maximum number of nested bus structures				[1]

						code metrics		DQA007		Code cyclomatic complexity				D3.10 Annex B		Complexity extracted: max. complexity for the whole C-code; average complexity per file; complexity per function; How to handle dataset? Avg, min, max, others? 																						A: KPI definition may be updated to fit already obtained data in D3.10

								DPI005		Maximum number of nested statements in a function				D3.10 Annex B		How to handle dataset? Avg, min, max, others?		Refer to email "RE: Code metrics KPI proposal"																				A: KPI definition may be updated to fit already obtained data in D3.10

								DPI006		Number of statements				D3.10 Annex B		Statemest per: the whole C-code; files; functions. How to handle dataset? Avg, min, max, other?		Refer to email "RE: Code metrics KPI proposal"																				A: KPI definition may be updated to fit already obtained data in D3.10

								DSQ001		Comment frequency within the generated functions				D3.10 Annex B		Comment frequence extracted per the whole C-code and files separately. Can we use those instead? How to handle dataset? Avg, min, max, others?		Refer to email "RE: Code metrics KPI proposal"																				A: KPI definition may be updated to fit already obtained data in D3.10

								DPI007		Number of lines of generated code per function 				D3.10 Annex B		Number of lines extracted per the whole C-code and files separately. Can we use those instead? How to handle dataset? Avg, min, max, others?		Refer to email "RE: Code metrics KPI proposal"																				A: KPI definition may be updated to fit already obtained data in D3.10

						coverage		DSQ002		Coverage % of branches during SIL				D3.10		Branch coverage extracted per file, not functions. How to handle dataset?

								DSQ003		Coverage % of function statements during SIL				D3.10		Statement coverage extracted per file, not function. How to handle dataset?

								DSQ004		Coverage % of branches during SIL 				D3.10		Duplication??

								DSQ005		Coverage % of function statements during PIL 				Same as SIL

						tests		DPI003		Error tolerance in the MIL 				D3.7, D3.9?		TBD?		Error tolerance is 0 as reported in D3.7

								DPI004		Error tolerance in the MIL-SIL				D3.10		How to handle dataset? Avg, min, max, others?

								DSQ006		SIL test without error 				D3.10

								DSQ007		PIL test without error				D3.9

						[1] AURORA_ProjectManagement_GeA_Progress_Reporting.xlsx

						[2] This document, sheet "AdaCore"

DYN stat.

										KPI

										SAE						ESC

										DPI003		DSQ006		DPI004		DSQ006		DPI004		DSQ003		DSQ002		DSQ007		N/A		DSQ005

				Simulink Model				UIT + Reference TESTS		MIL tolerance
(with respect to Euclid; see D3.7)		SIL tests status
(see D3.10)		SIL tolerance
(see D3.10)		SIL tests status 		SIL tolerance		% statement coverage (measured)		% branch coverage (measured)		PIL tests status
(see D3.9)		PIL tolerance
(see D3.9)		% statement coverage PIL

				SAM		sam		sam_subcase_1		0.00E+00		PASS		1.00E-15		PASS		0.00E+00		92.50%		93.00%		PASS		0.00E+00		Assumed the same results as for SIL, since the test scenarios are the same.

								sam_subcase_2								PASS (partial)

Václav Fišer: Václav Fišer:
Failed only on two points in second iteration:
ERROR on test iteration 2221 for test point 150
ERROR on test iteration 2461 for test point 150		0.00E+00						PASS		0.00E+00

						sam_acm_rcs_seq		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A

						sam_acm_rcs_seq_aux		sam_acm_rcs_seq_aux		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		100.00%		96.20%		PASS		0.00E+00

								sam_acm_rcs_seq_aux_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_aux_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_aux_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_aux_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_acm_rcs_seq_pt1		sam_acm_rcs_seq_pt1_test_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		97.66%		97.60%		PASS		0.00E+00

								sam_acm_rcs_seq_pt1_test_2				PASS		0.00E+00		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt1_test_3				PASS		0.00E+00		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt1_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt1_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt1_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt1_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_acm_rcs_seq_pt2		sam_acm_rcs_seq_pt2		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		99.23%		99.60%		PASS		0.00E+00

								sam_acm_rcs_seq_pt2_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt2_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt2_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_acm_rcs_seq_pt2_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_ctrl		sam_ctrl		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		92.20%		96.80%		PASS		0.00E+00

								sam_ctrl_ref_1		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								sam_ctrl_ref_2		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
ERROR on test iteration 2019 for test point 8 - Expected -2.21313221091261e+00 Found : -2.21313221091261e+00
		1.00E-15						PASS		0.00E+00

								sam_ctrl_ref_3		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								sam_ctrl_ref_4		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

						sam_ctrl_at		sam_ctrl_at_test_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		96.50%		100.00%		PASS		0.00E+00

								sam_ctrl_at_test_2				PASS		0.00E+00		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_at_test_3				PASS		0.00E+00		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_at_test_4				PASS		0.00E+00		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_at_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_at_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_ctrl_dz		sam_ctrl_dz_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		94.40%		95.00%		PASS		0.00E+00

								sam_ctrl_dz_subcase_2								FAIL		1.50E-01

Václav Fišer: Václav Fišer:
passes at this tolerance						PASS		0.00E+00

								sam_ctrl_dz_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_ctrl_rd		sam_ctrl_rd		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		91.70%		100.00%		PASS		0.00E+00

								sam_ctrl_rd_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_rd_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_rd_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_rd_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_ctrl_sa		sam_ctrl_sa_test_1		0.00E+00		PASS		1.00E-15		PASS (partial)

Václav Fišer: Václav Fišer:
ERROR on test iteration 6 for test point 5
ERROR on test iteration 26 for test point 5
ERROR on test iteration 29 for test point 5
ERROR on test iteration 64 for test point 4
ERROR on test iteration 82 for test point 5
ERROR on test iteration 83 for test point 5
ERROR on test iteration 88 for test point 5
ERROR on test iteration 99 for test point 5 		1.00E-15		98.23%		98.30%		PASS		0.00E+00

								sam_ctrl_sa_test_2				PASS		0.00E+00		PASS (partial)

Václav Fišer: Václav Fišer:
ERROR on test in 2nd iteration 37 for test point 4 - Expected -3.45697730497389e+00 Found : -3.45697730497389e+00
		1.00E-15						PASS		0.00E+00

								sam_ctrl_sa_test_3				PASS		0.00E+00		PASS		0.00E+00						PASS		0.00E+00

								sam_ctrl_sa_ref_1		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								sam_ctrl_sa_ref_2		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
ERROR on test iteration 2019 for test point 5 - Expected -2.21313221091261e+00 Found : -2.21313221091261e+00
		1.00E-15						PASS		0.00E+00

								sam_ctrl_sa_ref_3		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								sam_ctrl_sa_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_mm		sam_mm		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		98.76%		94.50%		PASS		0.00E+00

								sam_mm_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_mm_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_mm_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_mm_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						sam_nav_sun		sam_nav_sun		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		99.18%		98.80%		PASS		0.00E+00

								sam_nav_sun_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_nav_sun_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_nav_sun_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								sam_nav_sun_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

				FPMRCS		fpmrcs		fpmrcs		0.00E+00		PASS (Partial)		Not specified
in D3.10		FAIL		1.00E-12		93.05%		93.50%		PASS (Partial)		1.00E-15

						fpmrcs_mm		fpmrcs_mm		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		100.00%		100.00%		PASS		0.00E+00

								fpmrcs_mm_ref_1		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 3, 9, 10, 11, 12, 13 on iterations 0 and 1		0.00E+00						PASS (Partial)		1.00E-15

								fpmrcs_mm_ref_2		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 1, 9, 10, 11, 12, 13 on iterations 0 and 1		0.00E+00						PASS (Partial)		1.00E-15

								fpmrcs_mm_ref_3		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 1, 9 on iteration 0 and on point 1 on iteration 1		0.00E+00						PASS (Partial)		1.00E-15

								fpmrcs_mm_ref_4		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 1, 9, 10, 11, 12, 13 on iterations 0 and 1		

Václav Fišer: Václav Fišer:
Failed only on two points in second iteration:
ERROR on test iteration 2221 for test point 150
ERROR on test iteration 2461 for test point 150		0.00E+00						PASS (Partial)		1.00E-15

								fpmrcs_mm_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						fpmrcs_nm		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A

						fpmrcs_nm_ctrl		fpmrcs_nm_ctrl_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		91.73%		94.98%		PASS		0.00E+00

								fpmrcs_nm_ctrl_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								fpmrcs_nm_ctrl_subcase_3								PASS		0.00E+00						PASS		0.00E+00

								fpmrcs_nm_ctrl_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								fpmrcs_nm_ctrl_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								fpmrcs_nm_ctrl_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								fpmrcs_nm_ctrl_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								fpmrcs_nm_ctrl_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						fpmrcs_nm_gui		fpmrcs_nm_gui		0.00E+00		PASS		1.00E-15		PASS (partial)

Václav Fišer: Václav Fišer:
fails on point 20		1.00E-15		95.60%		96.00%		PASS		0.00E+00

								fpmrcs_nm_gui_ref_1		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 24,25,26 not in all iterations		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ref_2		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on point 18 during first two iterations and then on points 21, 24, 25 during some following iterations		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ref_3		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 22,24,25,26 during some iterations
		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ref_4		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 24,25,26 during some iterations		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ref_5		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on point 20 in every iteration, occasionately on points 24,26		1.00E-15						PASS		0.00E+00

						fpmrcs_nm_gui_ls_gui		fpmrcs_nm_gui_ls_gui_subcase_1		0.00E+00		PASS		1.00E-15		PASS (partial)

Václav Fišer: Václav Fišer:
ailed on points 18 and 22
occasionally points 19,23,24 fail as well		1.00E-15		96.02%		97.40%		PASS		0.00E+00

								fpmrcs_nm_gui_ls_gui_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								fpmrcs_nm_gui_ls_gui_ref_1		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on points 16,18,22		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ls_gui_ref_2		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Each run has 3 different test points failing in all iterations		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ls_gui_ref_3		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
same as above		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ls_gui_ref_4		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
same as above		1.00E-15						PASS		0.00E+00

								fpmrcs_nm_gui_ls_gui_ref_5		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
same as above		1.00E-15						PASS		0.00E+00

				OCM		ocm		ocm_subcase_1		0.00E+00		PASS (Partial)		Not specified
in D3.10		FAIL

Václav Fišer: Václav Fišer:
Multiple points off by more than 100x max margin		1.00E-15		94.10%		95.45%		PASS		0.00E+00

								ocm_subcase_2								FAIL		1.00E-15						PASS		0.00E+00

								ocm_subcase_3								FAIL		1.00E-15						PASS		0.00E+00

								ocm_subcase_4								FAIL		1.00E-15						PASS		0.00E+00

								ocm_subcase_5								PASS		0.00E+00						PASS		0.00E+00

						ocm_acm_rcs		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A

						ocm_acm_rcs_orb		ocm_acm_rcs_orb		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		95.06%		92.90%		PASS		0.00E+00

								ocm_acm_rcs_orb_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_acm_rcs_orb_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_acm_rcs_orb_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_acm_rcs_orb_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_acm_rcs_orb_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_acm_rcs_orb_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_ctrl		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A

						ocm_ctrl_cl		ocm_ctrl_cl_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		93.60%		95.56%		PASS		0.00E+00

								ocm_ctrl_cl_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_cl_subcase_3								PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_cl_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_cl_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_cl_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_cl_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_cl_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_cl_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_ctrl_ff		ocm_ctrl_ff		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		99.46%		99.50%		PASS		0.00E+00

								ocm_ctrl_ff_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_ff_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_ff_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_ff_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_ff_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_ctrl_ff_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_dvto		ocm_dvto		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		90.00%		90.90%		PASS		0.00E+00

								ocm_dvto_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_dvto_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_dvto_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_dvto_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_dvto_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_dvto_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_gui		ocm_gui		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		97.83%		98.20%		PASS		0.00E+00

								ocm_gui_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_gui_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_gui_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_gui_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_gui_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_gui_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_hmng		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A

						ocm_hmng_bias		ocm_hmng_bias		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		90.00%		88.90%		PASS		0.00E+00

								ocm_hmng_bias_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_hmng_bias_ctrl		ocm_hmng_bias_ctrl		0.00E+00		PASS		0.00E+00		PASS		1.00E-15

Václav Fišer: Václav Fišer:
required for 5 points to pass smoothly		

Václav Fišer: Václav Fišer:
fails on point 20		

Václav Fišer: Václav Fišer:
Fails on points 24,25,26 not in all iterations		

Václav Fišer: Václav Fišer:
Fails on point 18 during first two iterations and then on points 21, 24, 25 during some following iterations		

Václav Fišer: Václav Fišer:
Fails on points 22,24,25,26 during some iterations
		

Václav Fišer: Václav Fišer:
Fails on points 24,25,26 during some iterations		

Václav Fišer: Václav Fišer:
Fails on point 20 in every iteration, occasionately on points 24,26				88.90%		77.10%		PASS		0.00E+00

								ocm_hmng_bias_ctrl_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_hmng_bias_flg		ocm_hmng_bias_flg		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		90.50%		80.00%		PASS		0.00E+00

								ocm_hmng_bias_flg_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_hmng_null		ocm_hmng_null		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		97.77%		98.40%		PASS		0.00E+00

								ocm_hmng_null_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_hmng_null_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_hmng_null_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_hmng_null_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_hmng_null_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_hmng_null_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_mm		ocm_mm		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		96.00%		98.55%		PASS		0.00E+00

								ocm_mm_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_mm_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_mm_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_mm_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_mm_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_mm_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						ocm_nav_dv		ocm_nav_dv_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		98.00%		98.47%		PASS		0.00E+00

								ocm_nav_dv_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								ocm_nav_dv_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_nav_dv_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_nav_dv_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_nav_dv_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_nav_dv_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								ocm_nav_dv_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

				CMN		cmn_acm_rcs_sim_pt1		cmn_acm_rcs_sim_pt1		0.00E+00		PASS		0.00E+00		PASS (partial)

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		0.00E+00		98.25%		98.43%		PASS		0.00E+00

								cmn_acm_rcs_sim_pt1_ref_1		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt1_ref_2		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt1_ref_3		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt1_ref_4		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt1_ref_5		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		0.00E+00						PASS		0.00E+00

						cmn_acm_rcs_sim_pt2		cmn_acm_rcs_sim_pt2		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		95.13%		97.38%		PASS		0.00E+00

								cmn_acm_rcs_sim_pt2_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt2_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt2_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt2_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rcs_sim_pt2_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_acm_rwl		cmn_acm_rwl		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		98.89%		98.34%		PASS		0.00E+00

								cmn_acm_rwl_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rwl_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rwl_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rwl_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rwl_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_acm_rwl_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_eph_ear		cmn_eph_ear		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		100%		100.00%		PASS		0.00E+00

								cmn_eph_ear_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_eph_ear_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_eph_ear_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_eph_ear_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_eph_ear_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_eph_ear_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_eph_sun		cmn_eph_sun		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		100.00%		100.00%		PASS		0.00E+00

								cmn_eph_sun_ref_1		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								cmn_eph_sun_ref_2		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								cmn_eph_sun_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_eph_sun_ref_4		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								cmn_eph_sun_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_err		cmn_err		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		100.00%		100.00%		PASS		0.00E+00

						cmn_fdir_gyr		cmn_fdir_gyr		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		99.74%		99.78%		PASS		0.00E+00

								cmn_fdir_gyr_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_gyr_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_gyr_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_gyr_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_gyr_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_gyr_ref_6		N/A		N/A		N/A		N/A		N/A						PASS		0.00E+00

						cmn_fdir_rwl		cmn_fdir_rwl		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		96.70%		95.00%		PASS		0.00E+00

								cmn_fdir_rwl_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_rwl_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_rwl_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_rwl_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_rwl_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_fdir_rwl_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_fdir_rwl_aux		cmn_fdir_rwl_aux		0.00E+00		PASS		0.00E+00		PASS (partial)

Václav Fišer: Václav Fišer:
Fails on every iteration on point 4		

Václav Fišer: Václav Fišer:
ailed on points 18 and 22
occasionally points 19,23,24 fail as well		

Václav Fišer: Václav Fišer:
Fails on points 16,18,22		

Václav Fišer: Václav Fišer:
Each run has 3 different test points failing in all iterations		

Václav Fišer: Václav Fišer:
same as above		

Václav Fišer: Václav Fišer:
same as above		0.00E+00		98.50%		97.23%		PASS		0.00E+00

						cmn_fpm_nm_gui_ls_flg		cmn_fpm_nm_gui_ls_flg		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		92.10%		90.50%		PASS		0.00E+00

						cmn_hmng_cfm		cmn_hmng_cfm		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		92.81%		90.94%		PASS		0.00E+00

								cmn_hmng_cfm_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_cfm_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_cfm_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_cfm_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_cfm_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_cfm_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_hmng_nav		cmn_hmng_nav		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		97.80%		98.30%		PASS		0.00E+00

								cmn_hmng_nav_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_nav_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_nav_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_nav_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_nav_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_nav_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_hmng_null_ctrl		cmn_hmng_null_ctrl		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		90.50%		94.64%		PASS		0.00E+00

								cmn_hmng_null_ctrl_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_ctrl_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_ctrl_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_ctrl_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_ctrl_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_ctrl_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_hmng_null_flg		cmn_hmng_null_flg_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		100.00%		100.00%		PASS		0.00E+00

								cmn_hmng_null_flg_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_flg_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_flg_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_flg_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_flg_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_flg_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_flg_ref_6		N/A		N/A		N/A		N/A		N/A						PASS		0.00E+00

						cmn_hmng_null_gui		cmn_hmng_null_gui_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		98.43%		97.93%		PASS		0.00E+00

								cmn_hmng_null_gui_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_gui_subcase_3								PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_gui_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_gui_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_gui_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_gui_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_gui_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_hmng_null_gui_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_nav_gyr		cmn_nav_gyr_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		99.16%		99.20%		PASS		0.00E+00

								cmn_nav_gyr_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_gyr_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_gyr_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_gyr_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_gyr_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_gyr_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_nav_rwl		cmn_nav_rwl_subcase_1		0.00E+00		PASS		0.00E+00		PASS		0.00E+00		99.88%		99.93%		PASS		0.00E+00

								cmn_nav_rwl_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_rwl_subcase_3								PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_rwl_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_rwl_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_rwl_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_rwl_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_rwl_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_rwl_ref_6		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_nav_saa		cmn_nav_saa_subcase_1		0.00E+00		PASS		1.00E-15		PASS		1.00E-15		96.57%		96.30%		PASS		0.00E+00

								cmn_nav_saa_subcase_2								PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_saa_ref_1		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_saa_ref_2		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_saa_ref_3		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_saa_ref_4		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_saa_ref_5		N/A		N/A		N/A		PASS		0.00E+00						PASS		0.00E+00

						cmn_nav_sgkf		cmn_nav_sgkf_test_1		0.00E+00		PASS		1.00E-15		PASS		1.00E-15		94.74%		98.85%		PASS		0.00E+00

								cmn_nav_sgkf_test_2				PASS		1.00E-15		PASS		1.00E-15						PASS		0.00E+00

								cmn_nav_sgkf_test_3_subcase_1				PASS		1.00E-15		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_sgkf_test_3_subcase_2				PASS		0.00E+00		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_sgkf_test_3_subcase_3				PASS		1.00E-15		PASS		0.00E+00						PASS		0.00E+00

								cmn_nav_sgkf_ref_1		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								cmn_nav_sgkf_ref_2		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								cmn_nav_sgkf_ref_3		N/A		N/A		N/A		PASS (partial)

Václav Fišer: Václav Fišer:
Failed on two points: 134 and 140 during iteration 14676		

Václav Fišer: Václav Fišer:
same as above		

Václav Fišer: Václav Fišer:
Multiple points off by more than 100x max margin		

Václav Fišer: Václav Fišer:
ERROR on test iteration 2019 for test point 8 - Expected -2.21313221091261e+00 Found : -2.21313221091261e+00
		

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		

Václav Fišer: Václav Fišer:
passes at this tolerance		

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		

Václav Fišer: Václav Fišer:
Points 0 and 1 fails due to initialization		

Václav Fišer: Václav Fišer:
ERROR on test iteration 6 for test point 5
ERROR on test iteration 26 for test point 5
ERROR on test iteration 29 for test point 5
ERROR on test iteration 64 for test point 4
ERROR on test iteration 82 for test point 5
ERROR on test iteration 83 for test point 5
ERROR on test iteration 88 for test point 5
ERROR on test iteration 99 for test point 5 		

Václav Fišer: Václav Fišer:
ERROR on test in 2nd iteration 37 for test point 4 - Expected -3.45697730497389e+00 Found : -3.45697730497389e+00
		

Václav Fišer: Václav Fišer:
ERROR on test iteration 2019 for test point 5 - Expected -2.21313221091261e+00 Found : -2.21313221091261e+00
		1.00E-15						PASS		0.00E+00

								cmn_nav_sgkf_ref_4		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								cmn_nav_sgkf_ref_5		N/A		N/A		N/A		PASS		1.00E-15						PASS		0.00E+00

								cmn_nav_sgkf_ref_6		N/A		N/A		N/A		N/A		N/A						PASS		0.00E+00

AdaCore

		As of 11.5.2022

						OAS01		Number of support requests		closed:		22

										open:		3

						OAS02		Average time of requests		initial reponse time [minutes]		ticket name		type

										33		selection of QGen version for development

										87		Qgen for linux

										49		Qgen Debugger

										168		Qgen Debugger - GNAT Studio not launch

										116		QGen Verifier Blocking Error

										1494		Custom C simulation dataset (simulation vectors)

										378		Embedded Matlab Functions in Simulink

										874		Problems with Qgenc generated code		major bug

										57		failure in QGen Verifier Reporter		minor bug

										183		QGen on Protected Models

										291		Enums - Debug session

										1212		qgenpil

										77		Problem with pointers as input parameters in S-functions		minor bug

										188		coverage analysis tools with qgen-debugger

										1174		Multiple csv values for Signal builders

										446		test cases configuration with different model argument

										2421		QGen MISRA C documentation for generated code

										13		QGen Debugger - Zero tollerance result

										102		Problem with structure as Model argument input		minor bug								7.5801587302

										120		Enable function

										68		Polyspace

										454.8095238095

						OAS03		Number of issues/bugs		minor bugs:		3

										major bugs:		1

						OAS04		Number of days to solve a bug		time to close ticket [days]		ticket name		bug type

										7.75		Problems with Qgenc generated code		major bug

										7.045		failure in QGen Verifier Reporter		minor bug

										10.755		Problem with pointers as input parameters in S-functions		minor bug

										43.16		Problem with structure as Model argument input		minor bug

