
 

 

This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 101004291  

 

 

 

 

 

 

 

Flight SW Autocoding Life-cycle 
process (Software-in-the-loop) 

D4.2 

Document Code: AUR-SEN-RP-00032 

Document Version: 1.1 

Document Date: 02/06/2023 

Internal Reference: DOC00231005 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

0 

© AURORA Consortium, 2023  PUBLIC 

 

 

 

 

 

  

Signature Control 

Written Checked Approved 

Configuration 
Management 

Approved 

Quality Assurance 

Approved 

 Project Management 

J. Gómez A. Rodríguez R.M León A. López A. Rodríguez 

Date and Signature 

 

Date and Signature 

 

Date and Signature 

 

Date and Signature 

 

Date and Signature 

 

Signature not needed if electronically approved by route 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

1 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

 

 
  

Changes Record 

Rev Date Author Affected section Changes 

1.0 2022-02-18 J. Gómez 6 Added Software in the Loop Section 

1.1 2023-06-02 J. Gómez 1 
Removed chapter 7. Clarification added in the 
introduction section. 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

2 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

 

Index 

1. Introduction ....................................................................................... 4 

1.1. Purpose .............................................................................................................4 

1.2. Scope ...................................................................................................................4 

1.3. Document structure ...................................................................................4 

2. Related documentation ....................................................... 5 

2.1. Applicable documents ............................................................................. 5 

Table 1 Applicable documents ......................................................................................................................................... 5 

2.2. Reference documents .............................................................................. 5 

Table 2 Reference documents ......................................................................................................................................... 5 

2.3. Acronyms ......................................................................................................... 6 

Table 3 Acronyms ................................................................................................................................................................ 6 

2.4. Terms and definitions ............................................................................. 6 

3. Overview ....................................................................................... 7 

4. Flight SW Autocoding Life-cycle Process ................... 9 

Figure 1 Traditional GNC SW development with manual coding (from [RD4]) .................................................. 10 

Table 4: Test facilities definition ................................................................................................................................... 11 

Figure 2: Autocoding vs Manual SW development cycle ......................................................................................... 11 

5. Model-in-the-Loop Stage ................................................. 12 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

3 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

5.1. Unitary Integration Test ..................................................................... 12 

Figure 3: UIT Model harness............................................................................................................................................ 13 

5.2. Performance cases in FES ................................................................... 13 

5.3. Code Generation ...................................................................................... 14 

Figure 4 ESA proposed development life-cycle for AOCS/GNC SW (from [RD4]) ............................................. 15 

6. Software-in-the-Loop Stage........................................... 16 

Table 5: Software Criticality Definition..................................................................................................................... 16 

6.1. Static Analysis ........................................................................................... 16 

Table 6: Compliance levels claimed by the GCS ....................................................................................................... 17 

Figure 5: MISRA C checker in LDRA ............................................................................................................................. 18 

6.2. Dynamic Analysis .................................................................................... 18 

6.2.1. MIL-SIL comparison .................................................................................................................................... 18 

Figure 6: QGen Simulation model ................................................................................................................................. 19 

6.2.2. Coverage Analysis......................................................................................................................................... 20 

Table 7: coverage condition based on criticality levels ........................................................................................ 21 

Figure 7: LDRA Statement Coverage Analysis Result ........................................................................................... 22 

Figure 8: Software in the Loop scheme ...................................................................................................................... 22 

6.3. Next steps .................................................................................................... 23 

 

 

 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

4 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

1. Introduction 

1.1. Purpose 
This document describes the Flight SW life cycle for autocoding and the different processes and stages of a 
model-based process which cover the whole SW life cycle from requirements to qualification.  

The procedure is mainly focused for AOCS/GNC SW which has been selected as the primary use case of the 
project, but it can be adapted to other subsystems as well. 

The next steps in the Flight SW life cycle are the Processor-in-the-Loop and Hardware-in-the-loop phases that 
are described in separated documents, D4.3 and D4.4 respectively. 

 

1.2. Scope 
The Flight SW autocoding life-cycle process definition is the main core of the WP4 Flight SW Autocoding Life-cycle 
Process Definition of AURORA, as described in Annex 1 Part A of [AD1]. The document gathers the main process 
for the SW generation toolchain departing from the System requirements up to complete qualification, 
detailing it for the different stages of a typical software verification process 

This document is an output of the T4.2 activity included in WP4. Future version of this deliverable will be 
provided as outputs of T4.3 and T4.4. 

This document is based on previous output of WP4, document D4.1 which refers to Model in the Loop. This 
document updates the Software Autocoding Life Cycle with the inclusion of the Software in the Loop Stage. 
Later deliverables of WP4 will include the Processor in the Loop and Hardware in the Loop phases. 

 

1.3. Document structure 
The document has been structured as follows: 

• Section 1: this introduction 

• Section 2: Related documentation 

• Section 3: Overview of the AURORA methodology 

• Section 4: Flight SW Autocoding Life-Cycle Process 

• Section 5: Model-in-the-loop stage 

• Section 6: Software-in-the-loop stage 

 

 
  



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

5 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

2. Related documentation 
The following documents in the latest issue/revision from a part of this document. 

2.1. Applicable documents 
 

AD # Title Project Reference Issue Rev 

[AD1] AURORA Grant Agreement GA number 101004291 - - 

[AD2] AURORA Consortium Agreement (CA) CA Nº 101004291 AURORA - - 

Table 1 Applicable documents 

2.2. Reference documents 
 

RD # Title Reference Issue Rev 

[RD1] Space engineering Software ECSS‐E‐ST‐40 C - 

[RD2] Space Software Product Assurance ECSS‐Q‐ST‐80 C - 

[RD3] Software Engineering Handbook ECSS-E-HB-40 A - 

[RD4] Guidelines for the Automatic Code Generation for 
AOCS/GNC flight SW Handbook. Vol1 – General 
concepts 

- 1 0 

[RD5] AOCS/GNC Modelling Guidelines AUR-SAE-RP-0006 1 1 

[RD6] Guidelines for the Automatic Code Generation for 
AOCS/GNC flight SW Handbook. Vol2 – 
Mathworks specific guidelines 

- 1 1 

[RD7] QGen Evaluation Report AUR-ESC-RP-0007 4.1 1 

Table 2 Reference documents 

 

 
  



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

6 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

2.3. Acronyms 
 

Acronym Description 

AD Applicable Document 

ATB Avionics Test Bench 

COTS Commercial Off The Shelf 

EBd Executive Board 

ESE Engineering Simulation Facility 

FES Functional Engineering Simulator 

GA Grant Agreement 

GeA General Assembly 

HILF Hardware-In-the-Loop Facility 

HW Hardware 

MIL Model in the Loop 

N/A Not Applicable or Available 

PFM Proto Flight Model 

PIL Processor in the Loop 

RD Reference Document 

SDP Software Development Plan 

SIL Software in the Loop 

SRR System Requirements Review 

SVF Software Verification Facility 

SW Software 

TRB Test Review Board 

WP Work Package 

Table 3 Acronyms 

2.4. Terms and definitions 
N/A 

 
  



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

7 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

3. Overview  
The AURORA WP4 “Flight SW Autocoding Life-cycle Process Definition” [AD1] approaches the definition of a SW 
Autocoding Life-cycle Process, where Autocoded system refers to any Complex-Models systems that make a full 
use of MATLAB/Simulink for modelling the algorithms and behavior of the system. The most representative 
case of such a system in Space missions are the AOCS/GNC systems. In our approach Design and Development 
and running chained to verification activities and therefore improving the OBSW integration and validation 
program.  

This approach is supported by: 

• An early verification of the navigation models.  

• Auto-generated source code software following an iterative process. 

• Mission requirements Verification at GNC model level and component model.  

• Integration phase when OBSW components implement standard interfaces (API).  

• Aligned with Space standards and allowing as much as possible the automation of the process. 

• Iterative execution of the WP taking inputs from the technology Demonstrator activity. 

The Model-in-the-loop (MIL) , Software-In-the-Loop (SIL) and Processor-In-the-Loop (PIL) are key points of the 
incremental validation in order to verify the behavior of the GNC code in a representative environment and to 
identify computational resources required through code profiling.  

The whole process is iterative. This means that it is applicable several times for each function/mode iteration. 
The functional iterations are defined e.g., for a subset of functions that can be easily validated independently. 
For example, an AOCS iteration is associated with an AOCS mode. In the following, the subsystem of choice is 
the AOCS, but could be any functional chain subsystem expressed with models having Autocode capability (e.g., 
thermal, power). 

This activity enclosed the definition of following In-the-loop steps: 

• Model-in-the-loop 

The models have to comply with Aurora modelling standards and guidelines, (QGen framework) and the 
model simulations demonstrate the feasibility of the preliminary design and the robustness of the 
selected solutions using Monte Carlo test campaigns. Being able to perform such tests during the 
preliminary stages of the development allows for efficient iterations at system level, giving valuable 
contributions for trade-offs that involve other subsystems. 

• Software-In-the-Loop 

The auto-coding of the navigation model (QGen framework) will allow testing the Autocoded SW with 
respect to the algorithms already validated in a MIL environment.  

• Component-In-the-Loop  

The SW as an OBSW component has to follow the AURORA standard API, therefore the SW is 
integrated into a wrapper that implements the API for getting the services provided by the algorithms 
of the model-based design GNC and reacting to its outputs (CBI component model). The TASTE/QGen 
tool suite is used to compile, link and execute the components software.  

The TASTE/QGen tool suite is used to compile, link and execute the software. 

• Platform-In-the-Loop  

To validate the SW component running in the execution platform connected to an open-loop-
environment, typically using an Avionics Test Bench (ATB) equipment. 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

8 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

The process is iterative, and any error or change is done at model-level only and implies to iterate previous In-
the-loop steps. 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

9 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

4. Flight SW Autocoding Life-cycle Process 
The space SW generation procedure has traditionally relayed on a linear approach based on manual coding of 
the SW functions, which departs from the requirements coming from the top-level system, which are derived 
into SW requirements. From them, a SW architecture is defined, and further requirement levels might be 
derived. Then, an implementation procedure follows, which is lately checked and verified at the different levels, 
from unit to integrated architecture, in different facilities. Moreover, the SW is checked for readiness, 
correctness, maintainability, trying to detect implementation errors beyond those that can be detected by test. 
This process is tedious and implies a big number of resources.  

For AOCS/GNC, the main use case included in AURORA, this traditional process was composed of two parallel 
workflows with different stages: 

• Matlab/Simulink Models:  

This workflow relies on the implementation of Simulink models to define the GNC algorithm for the SC. 
It consists of the following steps: 

o Definition of requirements, which is common to the other workflow. Departing from the 
system requirements some requirements are derived to the GNC algorithms. 

o Model prototyping, developing the basic GNC algorithms to cover the mission/system needs. 
This covers the preliminary design. 

o Model detailed design. This includes the refinement of the models and the formal verification 
campaign using a representative simulator. This stage finishes the model workflow. 

• Manual SW implementation: 

o Definition of requirements, which is common to the other workflow. Departing from the 
system requirements some requirements are derived to the SW requirements. 

o From the algorithm implementation in the preliminary design phase, the SW requirements are 
refined to include compatibility with the outlined design. 

o Based on the SW requirements, the manual part of the SW not depending on the GNC 
algorithms is implemented. Once the preliminary design is over, a first GNC coding is performed 
and integrated and tested together with the other SW part. 

o After the detailed design phase, the SW is refined introducing some updates and the details 
coming from GNC algorithms. A SW validation campaign is performed in a representative 
simulation environment. 

o Then the generated SW is integrated within the system facilities and an extensive verification 
campaign is run (SIL, PIL, HIL). 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

10 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

 

Figure 1 Traditional GNC SW development with manual coding (from [RD4]) 

 

This traditional workflow normally takes large implementation times, is prone to human errors which are 
difficult to track and debug and it is therefore more expensive and less reliable. 

An alternative to use this manual based process, relies on autocoding techniques applied to models, in a model-
based approach targeting a simplified and more reliable procedure, reducing the implementation times, the 
number of errors and increasing maintainability, readiness and comprehensiveness. 

For AOCS/GNC the use of this model-based approach is the natural evolution of the abovementioned manual 
procedure, since the models have been already used in the past and can be used as baseline architecture and 
SW implementation, by using the appropriate autocoding conversion tool. 

This document gathers the different processes and stages of this model-based process which cover the whole 
SW life-cycle from requirements to qualification.  

The Table 4: Test facilities definition summarizes the main stages and facilities of AOCS/GNC validation. 

 

Verification 
Stage 

Facility Comment 

MIL FES 

Functional Engineering 
Simulator 

Model of the GNC algorithms implemented in a simulation 
framework (Matlab/Simulink) 

SIL FES 

Functional Engineering 
Simulator 

Software produced from model is connected to a spacecraft 
simulator to demonstrate that software is still requirement 
compliant 

PIL SW Test Bench SW is executed on a real OBC, which is connected to a Real Time 
Simulator (RTS). This stage is done to verify computing budget 
usage 

SVF SW Validation Facility The AOCS/GNC software is executed with the whole on-board 
software into a model of the OBC 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

11 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

Verification 
Stage 

Facility Comment 

HWIL FUMO (Functional 
model) 

ATB (Avionics Test 
Bench) 

PFM (Proto Flight 
Model) 

Final on-board software is run with some real avionics equipment 
with some spacecraft simulator, which closes the loop 

Table 4: Test facilities definition 

The complete software development cycle is presented in Figure 2: Autocoding vs Manual SW development 
cycle, where the different milestones and documents to be reported are listed at every milestone. 

 

Figure 2: Autocoding vs Manual SW development cycle 

 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

12 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

5. Model-in-the-Loop Stage 
This stage is focused on the generation of Matlab/Simulink models, compliant with requirements and early 
validated with tests that will result in the generation of an automatically generated code with QGen, 
representative of the original model. 

This stage is quite similar with the traditional approach of manual code generation, however some difference in 
the process is observed due to the earlier availability of the AOCS/GNC SW. At the beginning of the process the 
following documents shall be prepared: 

• ICD: joint work shared between the GNC and SW team in which the data flow and frequency required by 
the GNC specification is taken into account. Definition of the code generator settings are defined in this 
document. The GNC engineer is no longer blind to the software side of the process and shall have some 
insight on the final autogenerated code. 

• Model Requirements Specification: document used to design and implement the GNC algorithms based 
on the GNC requirements specification. 

Once that those documents are issued for the SRR milestone (System Requirements Review), the Model- in-the-
Loop begins and the generation of the models can start. In this step, the GNC engineer is being supported by a 
Modelling Guideline Handbook, which gathers industry modelling standards that are recommended to follow 
for a later easy integration and model maintainability. For a generic Simulink guideline for autocoding model 
generation, please refer to [RD5] and [RD6].  

For Aurora’s scope, a custom set of guidelines was generated ([RD5]). These new guidelines are Euclid heritage 
and were modified to account for QGen limitations i.e., limitations in terms of Simulink block constraints for 
instance. 

The resulting Simulink will apply the algorithms specified in the Model Requirements Specification. In parallel, 
models representative of the real word, such as DKE models, sensors or actuators shall be developed and ready 
for performance test. 

These model algorithms are then subjected to testing in order to ensure compliance against mission 
requirements, to identify bugs and to ensure sufficient model coverage. Note that model coverage is not the 
same as code coverage. Nonetheless, typically, large model coverage implies large code coverage, something to 
be seek in later stages of software validation. Two different test scenarios are defined: 

• Unitary Integration Test of the individual models 

• Verification of the AOCS/GNC performance requirements on a validated FES with representative test 
cases. This campaign typically includes a full Monte Carlo campaign. 

5.1. Unitary Integration Test 
Testing starts at unitary level, where Unitary Integration Tests are defined by the GNC engineer. This UIT are 
developed to cover all the functionalities implemented in each function, to test boundaries and to verify 
requirements allocated to unitary level. These tests can be considered as the classical bottom-up approach in 
which a set of pre-defined inputs are fed to the model in open-loop simulations.  

For each AOCS mode, the UIT campaign will start with the deeper models (leaf models), which are hierarchy 
tested in the first place. These leaf models are isolated from the rest of the models. Once that the model has 
been properly tested and its behavior has been properly assessed, the process continues with upper levels, 
aggregating the previously tested models. Following this procedure, if a top model test fails, it can be safe to 
assume that the lower models do correctly behave. 

The typical procedure of generating the UIT is via test harness, in which the model to test is placed into a model 
reference block where inputs are fed, and outputs are collected for a final PASS/FAIL evaluation according to 
the test specification. I/O signals shall be collected for later verification campaigns (SIL/PIL) as those will be used 
as a confirmation that the autogenerated code behaves as models, that is, same inputs results in same outputs. 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

13 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

In this sense, the AOCS models are used as Technical Specification for the auto generated code as the software 
behavior is validated against model behavior. Library functions used in the model development shall also be 
unitary tested. 

Inputs can be fed via Simulink Signal builder, which allows for easy change of inputs signals and creation of 
various signal groups. This method allows for an effective and easy execution of the unitary test with easy signal 
replacement without effectively changing the test harness. 

Collection of the I/O can for each test case is typically done via the Signal Logging capabilities of Simulink, 
where data is automatically stored as a Simulink Dataset variable, although the user is free to choose the most 
suitable signal save option for their need. 

 

Figure 3: UIT Model harness 

 Steps 

a) Generate UIT specification, defining what inputs and outputs are expected 

b) Generate the test harness with the following components 

a. Input block 

b. Model reference block 

c. Output block with PASS/FAIL criteria 

c) Run MIL UIT to validate correct test implementation 

a. In case of FAIL, review test case implementation and repeat the MIL execution test 

d) Gather I/O signals for MIL-SIL comparison 

e) Report results obtained in the corresponding section of the Test Report 

 

In conclusion, UIT are open-loop test cases defined for an early verification of the GNC algorithms and 
requirements at unitary level with the addition of a preliminary model coverage. Once the model’s behavior has 
been tested at unitary level, then, they can be included inside a simulation architecture for requirements 
verification. 

 

5.2. Performance cases in FES 
A Functional Engineering Simulator is a simulation environment whose purpose is the verification of the 
AOCS/GNC models. This simulator is in charge of managing the different test and mission scenarios specified, 
being also a direct support of the software development. 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

14 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

The main components of a FES architecture are: 

• Simulation Engine: responsible of the definition of a simulation scenario, definition of the mission and 
the configuration of the models to be simulated. Parameters are configured and pre-processed to 
obtain simulation parameters, which are set in the mask parameters. 

• Simulation Core: Simulink templates that is customized for each operation mode. Different Simulink 
libraries containing the GNC algorithms are present so that the template can replace the adequate 
models. 

• Monte Carlo Simulation: functions that manage the configuration and control of Monte Carlo 
simulations, generating perturbed values of the model parameters and controlling the storage of the 
raw data 

• Post-processing: functions to post-process the raw data obtained. This component typically generates 
representative plots and graphs needed for AOCS/GNC validation. 

• Failure injection: component in charge of injecting failures in the simulation to check failure conditions 
or FDIR algorithms. Typical failure comprises of freeze signal, set a signal to a desired value or linear 
signal behaviour. 

It is important to remark that the FES itself must be validated according to a Software Verification and 
Validation Plan, which complies with the ECSS-E-40 standard.  

Unlike UIT, test cases are run in closed loop, including, not only the GNC models generated and unitary tested, 
but the real word representative models (DKE, sensors and actuators), which were previously validated to 
ensure good overall performance. 

Test cases in a FES are no longer defined as a set of inputs, but as a timeline file that it is read by the simulation 
engine. This timeline defines the set of initial conditions and the operational timeline, which defines the set of 
commands to be followed. This timeline is typically defined as an external file, XML file for instance, however, 
this file is simulator dependent. 

Test cases are defined in order to verify that the system is compliant with the requirements specified in the 
SRR. These tests may include single shots runs with simulator parameters adjusted for adequate testing or 
Monte Carlo simulations, with the perturbation of relevant parameters. 

Once that the results of the test have been formally verified, reported and accepted in Test Reports, the PDR 
closes this stage. 

 

5.3. Code Generation  
Code generation will be further discussed in the next sections as this process belongs to the SIL campaign, 
nonetheless it is close related to the model development, so a brief insight is presented here. 

After running the complete MIL campaign verification, the code generation process starts. Autocoding tools 
such as Simulink Coder toolbox or QGen can be used to translate the model architecture into C code software 
files, which can be embedded into a software testing facility for the SIL campaign. 

The proposed approach here is that the autogenerated code shall not be manually modified at any level. In case 
of some bugs identified during the software verification process that require correction, the solution shall be 
applied to the model, being the autocode process regenerated. This is done to ensure that the models and the 
code generated from them are always align and the AOCS team and Software team can maintain their own 
process with no major differences. An assessment of the tests to be repeated is done to ensure that the 
modifications to the models do not imply fail tests. 

 

 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

15 

© AURORA Consortium, 2023  PUBLIC 

 

 

Figure 4 ESA proposed development life-cycle for AOCS/GNC SW (from [RD4]) 

 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

16 

© AURORA Consortium, 2023  PUBLIC 

 

6. Software-in-the-Loop Stage 
Software in the loop (SIL) is the next stage of the validation and verification process of a piece of software after 
Model in the Loop (MIL). This stage comprises the static and dynamic analysis of the autogenerated code, in 
which metrics about code performance and adherence to standards are extracted. In this document, it is 
assumed that the code language to analyze and check is C as one of the main languages in the space industry . 
From now on, every time source code is mentioned, it is understood that it is written in C language. Ada is also a 
programming language spread in the generation of space software, nonetheless, being Matlab, the most 
employed programing tool for algorithm generation, written and autogenerating code in C language, this is the 
one to be analyzed.   

Autogenerated code is generated from Matlab/Simulink models which shall follow Savoir Guidelines for 
Automatic Code Generation Vol 1 [RD4] and Vol 2 [RD6]. The first volume is dedicated to the general concept of 
development and verification, which can be traced to ECSS E-40 and ECSS Q-80, two industry standards 
collecting the best software engineering practices. The second volume is dedicated to the AOCS modeling, 
from general modeling guidelines to configuration of the model for code generation. The whole process of 
software development, from system definition requirements to the final deployment on the on-board 
computer is supervised by the DO-178C standard. 

In the scope of the Aurora project, modelling guidelines [RD5] have been adapted from Euclid project with 
modifications related to QGen constraints. This modelling guidelines are defined according to industry 
standards. 

At the time of defining the mission requirements, it is important to define the criticality of the software to be 
developed. This is crucial, as different level of criticality requires different levels of verification methods or even 
a tailoring of the guidelines can be considered.  

 

Criticality Definition 

A Function that if not correctly performed results in catastrophic consequences 

B Function that if not correctly performed results in critical consequences 

C Function that if not correctly performed results in major mission degradation 

D Function that if not correctly performed results in minor mission degradation 

E Function that if not correctly performed, does not alter the correct system behavior, and does not 
impose additional ground/pilot workload 

Table 5: Software Criticality Definition 

The definition of the software criticality levels implies the minimum number and types of analysis required to 
obtain a qualifiable software product. It does not impose any condition on additional test that can be 
performed on a piece of software. 

The SIL campaign can be subdivided into two phases depending on the type of analysis to be performed on the 
code, either static analysis or a dynamic analysis. It is important to remark that, although the Embedded Coder 
tool from Mathworks or QGen from AdaCore may ensure some warranties in the final code about coding 
standards or metrics the code fulfill, the software analysis must be performed. 

6.1. Static Analysis 
The static analysis is the analysis of the code without executing the application, that is, an analysis of its 
structure and syntaxis. This phase is typically used to detect security vulnerabilities, performance issues and 
non-compliance with standards. It is typically done by searching the source code to identify specific coding 
patterns. 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

17 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

Some of the most common metrics to track inside a code are: 

• Cyclomatic complexity. 

• Nesting level. 

• Number of statements. 

• Comment frequency. 

• Code size. 

The cyclomatic complexity is a measure that determines the stability and level of confidence of a software 
product. Lower cyclomatic complexity implies easier to understand codes and less risky to modify them. This 
metric was initially created with manual codes in mind, nonetheless, due to how autogenerated codes are 
structure and written, typically in a more cumbersome way, this metric returns a higher value, and it is treated 
with less impact on the static analysis phase. The rest of the metrics serve as a way to comply with code metrics 
defined in the Quality Assurance Plan. 

It is important to remark that these metrics do not consider how the code is written, but how it is structured. 
Some coding rules are required to ensure a quality product. DO-178C imposes the adherence to appropriate 
coding rules for safety-critical applications, ensuring safe- coding practices that will result in easier and more 
efficient work. Although DO-178C does not prescribe the adoption of MISRA C rules for coding standard, its use 
has become so extended, it has become the coding rules standard to follow. 

Originally released in 1998, the Motor Industry Software Reliability Association, MISRA C, has evolved and 
different versions have been published with updates. The current version to be followed is MISRA C:2012, 
containing 143 rules and 16 directives. Over the years, MISRA C:2012 has evolved with two Amendments (1 & 2), 
which expands the rules and directives to a total of 158 rules and 17 directives. MISRA coding guidelines can be 
divided into four categories: 

• Mandatory guidelines: guidelines which violation is never permitted. 

• Required guidelines: guidelines which can only be violated when supported by a deviation defining a set 
of clear restrictions, requirements, and precautions. 

• Advisory guideline: recommended guidelines to be followed. Violations are identified but are not 
required to be supported by a deviation. 

• Disapplied guidelines: advisory guidelines which are ignored. 

At the beginning of the project, a re-categorization plan is established as a statement of detailing how the 
guidelines are being applied to the software product. It is in this plan, approved by customer and supplier, 
where disapplied guidelines are defined and where some of the required or advisory guidelines are promoted 
to mandatory based on the relative importance those guidelines have on the scope of the project. The 
conclusion of this plan is collected into the Guideline Compliance Summary (GCS), as summarized in Table 6. 

 

Misra Category Compliance levels claimed by the GCS 

Mandatory Compliant - - - 

Required Compliant Deviations - - 

Advisory Compliant Deviations Violations Disapplied 

Table 6: Compliance levels claimed by the GCS 

The MISRA C software compliance can be manually checked for smaller projects but, as the project grows, the 
code quickly becomes hard to track manually and external tools are required. Fortunately, a great variety of 
tools are able to statically covers all the MISRA C rules and directives. Some examples are: 

• Matlab offers Polyspace tool as a way to check MISRA compliance among other standards. Nonetheless, 
the Embedded Coder tool, capable of generating C code from Simulink models, grants integrated 
support with MISRA or AUTOSAR standards. 

• Cppcheck, a versatile free software under the GNU General Public License. 

• Parasoft C/C++ test, which can be integrated as an extension for Visual Studio. 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

18 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

• LDRA (Liverpool Data Research Associates), not only offers MISRA compliant checks, but also includes 
coverage analysis up to level A. 

 

Figure 5: MISRA C checker in LDRA 

Of course, the selection of the static analysis tool will vary from project to project, depending on the scope of 
the project, the availability of funds for licenses, expertise of the company in certain tools, etc. Regarding the 
AURORA project, the code, generated by QGen has been analyzed by two different tools, cppcheck and LDRA. 
In addition, AdaCore company uses CodePeer as a static analysis tool for the validation of QGen, although this 
tool is developed for Ada source code, not C code. 

6.2. Dynamic Analysis 
The dynamic analysis of the code requires running the code in a software testing environment capable of 
executing the required test specifications. This is done to ensure correctness in the generation of the code, 
requirement verification and code coverage analysis. 

In classical approaches, the code is manually generated from the models by a software team. Based on the 
models, the team generates a software piece that shall ensure compliance with requirements. As the software 
code is manually written, it is also necessary to adapt existing test specifications or even create new ones to 
ensure requirement compliance.  

With the autogenerated code, the process of requirement validation is substituted by a numerical comparison 
between the results obtained from a model in MIL and the same test run in SIL. As the requirements have 
already been validated at model level, a numerical comparison ensures whether the code has been correctly 
generated from the model, leading to a direct requirement compliance. 

6.2.1. MIL-SIL comparison 
The way to proceed and test the generated code is to first gather the inputs and outputs from the unitary MIL 
simulation tests. It is assumed that the test specified for the MIL phase verify the model requirements at unitary 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

19 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

level and are considered to be PASSED. Once that you have gathered these I/O, the user can proceed to feed 
the generated code with the inputs of the unitary tests. Outputs are gathered and compared to the outputs 
previously obtained in MIL. 

Although an exact numerical comparison is possible given a correct configuration of the compiler, the software 
libraries, or the environment, it is expected some numerical discrepancies between the two different simulation 
environments. It is the task of the AOCS/GNC engineer to define a numerical threshold to consider that a test 
has passed and that the discrepancies do not alter the AOCS performance. As a rule of thumb, differences lower 
than 1E-12 are consider acceptable. Nonetheless, this is case-dependent and should be analyzed by an expert, 
as the threshold can vary. 

The process of running the SIL simulations depends on the selected environment. Matlab/Simulink for instance, 
offers the possibility to purchase the Embedded Coder license, which allows the generation of the code and SIL, 
PIL capabilities inside Simulink. This is especially useful as it is easy to run a MIL/SIL comparison given a model 
harness and two signalbuilders, one for inputs to the SIL model and one for the MIL outputs, which are used for 
comparison. 

In the scope of the Aurora project, the selected environment to run the SIL campaign is GNAT studio, which is an 
Integrated Development Environment (IDE) for software development. It can be used for testing the 
autogenerated code by QGen as it is integrated in GNAT. Nonetheless, running the SIL campaign in GNAT is not 
as straightforward as in the case of using Simulink Embedded Coder since a transition from Simulink to GNAT 
must be done. 

The process to follow for testing the SIL campaign in GNAT starts in Simulink, where a debugger model is 
generated. This model consists of: 

• The original Simulink model, which is placed inside a Model Reference block. 
• An input block, in which a Signalbuilder is placed. This block allows for including some predefined 

signals which serves as input to the model. Also, the data is automatically configured to the right data 
type and dimensions, based on the input ports of the original model. 

• Scope block to graphically view I/O from simulation. 

 

Figure 6: QGen Simulation model 

The model is automatically configured foe debugging options, that is, fixed-step solver with discrete continuous 
times and a fixed step taken from the original model. I/O signals are logged to register and save the data to be 
later used.  Once the inputs are written in the Signalbuilder block, the GNAT studio is launched, code generated, 
and simulation is run. For a more detailed view of the process, please refer to the QGen Evaluation report [RD7].  

Outputs of this SIL campaign is the MIL-SIL comparison between model and code. Again, the required tolerance 
to consider a PASS criterion is model dependent and shall be studied by the AOCS engineer.  



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

20 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

6.2.2. Coverage Analysis 
The purpose of coverage analysis is to help find areas of a program not exercised by test cases which can 
potentially contain bug errors, find areas of code which cannot be exercised and creates unnecessary memory 
allocation and identify redundant test cases. 

In Section 5, it is explained the concept of model coverage and how the defined test shall aim for a full 
coverage. The idea behind defining tests which are targeted for high model coverage is based on the idea of 
code coverage. There is not a one-to-one correlation between model and code coverage (100% model coverage 
may not imply 100% code coverage), nonetheless, they are extremely coupled, as the code is generated from 
the model. 

Before digging in industry standard about coverage, some of the definitions for coverage analysis are: 

• Condition: it is a Boolean expression. It cannot be broken into simpler Boolean expressions. 
• Decision: a Boolean expression composed of conditions and zero or more Boolean operators. 

• Statement coverage: measures which of the code lines are executed 
 

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
× 100 

 
This measurement allows to determine what are the unused or unreachable statements or complete 
branches of our code, as well as dead code. 
 

• Decision coverage: this measurement reports the true or false expressions. The goal of this metric is to 
cover and validate all the accessible code by checking and ensuring that each branch of every possible 
decision point is executed 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
× 100  

• Branch coverage: this metric evaluates which every outcome from a code module is tested. That is, 
ensuring that each decision condition from every branch is executed. 

𝐵𝑟𝑎𝑛𝑐ℎ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐𝑒𝑠
× 100 

        Example: if outcomes of a decision are binary, True and False evaluations are required. 

• Condition coverage: this metric evaluates the variables of subexpressions in a conditional statement. 
The goal is to check individual outcomes for each logical condition. 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠
× 100 

Example: in the line of code “if (x<y) AND (a>b) THEN”, there are 4 possible combinations (TT, FF, TF, FT). 
Each 4 of them shall be tested for a 100% condition coverage 

• Modified Condition/Decision Coverage: every point of entry and exit in the program has been invoked 
at least once, every condition in a decision in the program has taken all possible outcomes at least once, 
and each condition has been shown to affect that decision outcome independently. A condition is 
shown to affect a decision's outcome independently by varying just that condition while holding fixed 
all other possible conditions. 

 

Coverage analysis is required by the industry standards, ECSS-E-ST-40C and DO-178C, as a way of software 
verification. The level of code coverage analysis depends on the criticality of the system. For software with 
criticality below D, there is no need to demonstrate code coverage results. For the rest, the Table below shows 
what must be done in order to certificate a software product: 

 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

21 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

Criticality Functions Calls Blocks Condition 

C With exists Yes Statement blocks None 

B With exists Yes Statement and 
decision 

None 

A With exists Yes Statement and 
decision 

MC/DC 

Table 7: coverage condition based on criticality levels 

The aim of the coverage analysis is to reach 100% coverage for all the coverage types required by the industry 
according to the criticality level. Results of the analysis are reported in a Software Verification Report in which 
the code which does not reach 100% shall be properly assessed and agreed with the customer. For instance, 
when generating a model, safety requirements demand default option for switch cases or if statements, even 
though this default option may not be possibly exercised. 

The coverage analysis for an autogenerated code starts from the definition of test cases for each individual 
model, that is, in the MIL phase. With the definition of the test cases and the gather of the I/O for those cases 
the coverage dynamic analysis can start.  This process is typically an iterative one as it is not expected to reach 
100% in the first iteration. 

The process can be described as follows: 
1. Define test cases in Model in the Loop. Test cases are defined in a test specification document and must 

ensure requirement verification at AOCS level. 
2. Gather I/O for those cases. Outputs for coverage analysis are not required as the focus of this analysis is 

not to check outputs of simulation, but which lines of codes and branches are executed. 
3. Analyze the coverage of the autogenerated code with a coverage analysis tool. 
4. Check which execution paths are not covered and define new test cases to cover those lines. 
5. Rerun the coverage analysis (steps 1 to 4) until reaching 100% and justify the results. 

It is important to remark that the coverage is analyzed at model/unitary level. The coverage shall be analyzed by 
unitary test cases defined for a specific module of the final product, that is, the code generated from a unitary 
model. As an example, if a model A, contains model B with some additional algorithms, the coverage analysis of 
model A should not include model B, as that model will have its own dedicated set of test cases. 

There are multiple tools that measures the coverage results of a given code. The selection of a coverage 
analysis tool shall be based on costs, the criticality level of the software, interoperability with the test 
environment, code language, etc. 

Some of the most common tools for coverage analysis are 

• Gcov: a free open-source coverage analysis and statement by statement profiling tool 
• Bullseye Coverage: which includes condition/decision coverage analysis and the ability to merge results 

from distributed testing 

• LDRA: previously mentioned in the static analysis section. This tool, apart from offering 
condition/decision coverage for software products with criticality level A, also offers the possibility of 
automatically generate test cases that provide 50-80% coverage. 

• Other tools: Coco, Parasoft Jtest, Testwell CTC++ 

The main driver on the selection of the coverage tool is criticality of the software to be qualified. Higher 
criticality software products require validation and verification methods that some tools may not offer. 

The typical range of prices for a license is 500-800$ yearly. This range of prices does not apply to gcov, since it is 
a free software, and LDRA, which prince range is between 3000-5000$, depending on the number of seats. This 
price is understood by the number of options and verification tools LDRA offers, being one of the most 
complete tools for critical software verification.  



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

22 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

 

Figure 7: LDRA Statement Coverage Analysis Result 

 

With the completion of the coverage analysis, which results shall be justified in the Software Verification 
Report, the SIL phase can be considered complete. For a more graphic view of the process, the next Figure 
illustrate the whole SIL campaign, starting from the original Simulink models to the final report. 

 

Figure 8: Software in the Loop scheme 

Starting from the original Simulink models, Unitary Integration Test are run, and results are being saved in a MIL 
Input/Output file. The code is generated from the model and embedded in a simulation environment capable of 
running the code. Additional code, generated by the specific tool to be used, may be required as a framework 
for the simulation.  



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

23 

© AURORA Consortium, 2023  PUBLIC 

 

AUR-SEN-RP-00032 

1.1 

02/06/2023 

Once the code is available, the static analysis tools are run to extract all the relevant information about the code 
structure as explained in previous sections. This process is followed by the dynamic simulations of the code, 
which runs the inputs already extracted in MIL and compare the SIL outputs with the expected values. In 
addition, the code coverage tools extracts which execution paths, functions, statements, etc. are executed.  

6.3. Next steps 
Once the static and dynamic analysis have been performed on the piece of software in this stage, results are 
being reported and the go-on by the customer has been consolidated, the next step of the project starts, the 
Processor in the Loop phase (PIL). It is in this phase where the code is deployed in a representative environment 
of the real flight processor, either deployed in a testbench with a real processor or deployed in a simulation 
framework with a representative simulator of the processor. 

The main scope of this stage is, consolidate AOCS requirements by a numerical comparison of the I/O from 
previous phases and check the CPU budget, multithreading execution tasks, jitter, etc. Some features such as 
the CPU load, maximum execution times, average function execution times can be tested in SIL. Nonetheless, 
the results are not representative of the final product. That is why this metrics are evaluated in this phase, 
which will be extended in future releases of this document. 

 



 

 

D4.2 Flight SW Autocoding Life-cycle process (Software-in-the-loop)  

 

 

This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 101004291  

 

 

 

 

 

 

 

 

 

 

 

 

 


	1. Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Document structure

	2. Related documentation
	2.1. Applicable documents
	Table 1 Applicable documents

	2.2. Reference documents
	Table 2 Reference documents

	2.3. Acronyms
	Table 3 Acronyms

	2.4. Terms and definitions

	3. Overview
	4. Flight SW Autocoding Life-cycle Process
	Figure 1 Traditional GNC SW development with manual coding (from [RD4])
	Table 4: Test facilities definition
	Figure 2: Autocoding vs Manual SW development cycle

	5. Model-in-the-Loop Stage
	5.1. Unitary Integration Test
	Figure 3: UIT Model harness

	5.2. Performance cases in FES
	5.3. Code Generation
	Figure 4 ESA proposed development life-cycle for AOCS/GNC SW (from [RD4])


	6. Software-in-the-Loop Stage
	Table 5: Software Criticality Definition
	6.1. Static Analysis
	Table 6: Compliance levels claimed by the GCS
	Figure 5: MISRA C checker in LDRA

	6.2. Dynamic Analysis
	6.2.1. MIL-SIL comparison
	Figure 6: QGen Simulation model
	6.2.2. Coverage Analysis
	Table 7: coverage condition based on criticality levels
	Figure 7: LDRA Statement Coverage Analysis Result
	Figure 8: Software in the Loop scheme

	6.3. Next steps


