

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101004291

f

Toolchain Demonstration Report
D5.9

Document Code: AUR-N7S-RP-0003

Document Version: 1.3

Document Date: 28/04/2023

Internal Reference: DOC00316753

D5.99 Toolchain Demonstration Report

© AURORA Consortium, 2023 CONFIDENTIAL

Signature Control

Written Checked Approved

Configuration
Management

Approved

Quality Assurance

Approved

 Project Management

M. Kurowski F. Florczyk R. M. León A. López A.I Rodríguez

Date and Signature

Date and Signature

Date and Signature

Date and Signature

Date and Signature

Signature not needed if electronically approved by route

D5.9 Toolchain Demonstration Report

1

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Changes Record

Rev Date Author Affected section Changes

1 2023-01-31 M. Kurowski All Initial issue

2 2023-02-03 M. Kurowski Requirement coverage Updated requirement coverage

3 2023-02-06 M. Kurowski Requirement coverage
Updated requirement coverage, added
justification

4 2023-04-28 M. Kurowski

Requirement coverage

Code metrics

Reference documents

Updated requirement coverage and removed
justification

Added appendix with code metrics

D5.9 Toolchain Demonstration Report

2

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Index

1. Introduction ... 5

1.1. Purpose, scope and content .. 5

1.2. Project motivation and objectives .. 5

2. Applicable and reference documents 6

2.1. Applicable documents ... 6

2.2. Reference documents .. 6

3. Terms, definitions and abbreviated terms 8

4. Toolchain Overview .. 9

4.1. Introduction ... 9

4.2. Software behaviour summary ... 9

5. Toolchain Development ... 12

5.1. Context .. 12

5.2. Method ... 12

5.3. SpaceCreator tests ... 13

5.4. Kazoo tests .. 13

6. Toolchain Demonstration .. 15

6.1. Overview .. 15

D5.9 Toolchain Demonstration Report

3

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

6.2. Reference Component Set .. 15

6.2.1. Overview ... 15

6.2.2. TimeService... 15

6.2.3. DataStore .. 16

6.3. Requirement coverage .. 17

6.3.1. N to M asynchronous communication .. 17

6.3.2. Fault Detection .. 19

6.3.3. Events ... 21

6.3.4. Component Management ... 23

6.3.5. CBI Runtime .. 26

6.3.6. Reference Component Set and DataStore ... 27

6.3.7. AOCS/GNC SW components ... 29

6.3.8. General ... 31

6.3.9. Requirements for Tool-suite integration .. 32

6.3.10. Summary .. 38

7. Recommendations .. 39

7.1. General ... 39

7.2. Interface View ... 39

7.3. Function Tester .. 39

7.4. Simulink Importer ... 39

7.5. Runtime .. 39

8. Lists ...41

8.1. List of Tables... 41

8.2. List of Figures ... 41

D5.9 Toolchain Demonstration Report

4

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

9. Annex A – Code metrics ... 43

D5.9 Toolchain Demonstration Report

5

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

1. Introduction

1.1. Purpose, scope and content
The purpose of this document is to report the status of the AURORA Toolchain for TASTE with respect to the
requirements of the AURORA project stated in the Component-Based Interface (CBI) Requirements Specification
[RD1].

This report provides an overview of the TASTE Toolchain, explains the development process of the AURORA
software contributions, and describes the Toolchain demonstration activity for the requirements fulfilment
evidence. Finally, the report summaries some recommendations for future activities that could benefit the TASTE
toolchain and its users.

1.2. Project motivation and objectives
The AURORA project aims to provide a European tool suite for the process of development and validation of a
critical Auto-coded Flight software product in the Space domain and the demonstration of Autocoding
technology in an industrially relevant environment.

The solution uses QGen to transform Simulink/MATLAB models into source code to be directly integrated into
embedded software items. This process is orchestrated by ESA’s TASTE MBSE toolchain and exposed to the users
via a friendly Integrated Development Environment. In order to ensure interoperability, the developed
Component Based Interfaces Model integrates state-of-the-art concepts inspired by similar solutions (AUTOSAR,
CFS) and will be able to be deployed independently from TASTE (e.g., for manual code). Practical verification are
enabled by TASTE runtime components targeting Leon3 processor.

The technology demonstration is carried out by exercising the automated code in AURORA with the already
validated and verified results of the auto-generated code from the ESA’s Euclid mission (where SENER is the prime
contractor).

In addition to the software design, implementation, integration and validation, the project defines the Autocoded
Flight Software Life-cycle process and methodology for the Specification, Development and Validation of
Autocoded-SW.

D5.9 Toolchain Demonstration Report

6

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

2. Applicable and reference documents

2.1. Applicable documents

ID Title Reference Rev.

 ECSS – Space engineering

Software

ECSS-E-ST-40C 2009/03/06

 ECSS – Space engineering

Software engineering handbook

ECSS-E-HB-40A 2013/12/11

 ECSS – Space Engineering

Telemetry and telecommand packet utilization

ECSS-E-ST-70-41C 2016/04/15

 CCSDS – Space Packet Protocol CCSDS 133.0-B-2 2020/06

2.2. Reference documents

ID Title Reference Rev.

RD1 D5.1 CBI Requirements Specification AUR-UPM-TN-0001 1.4

RD2 D5.2 CBI Technical Architecture AUR-N7S-RP-0001 1.5

RD3 D5.3 AURORA Component Model AUR-UPM-RP-0010 3.4

RD4 D5.4 AURORA Interface Specification AUR-N7S-RP-0002 1.6

RD5 D5.7 CBI Demonstration Report AUR-UPM-RP-0012 1.2

RD6 TASTE toolchain https://taste.tools/ N/A

RD7 TASTE wiki https://taste.tuxfamily.org/wiki/

RD8 RTEMS SMP QDP https://rtems-qual.io.esa.int/ N/A

RD9 TASTE main repository https://gitrepos.estec.esa.int/taste/ta
ste-setup

N/A

RD10 Kazoo repository https://gitrepos.estec.esa.int/taste/ka
zoo

N/A

RD11 SpaceCreator repository https://gitrepos.estec.esa.int/taste/sp
acecreator

N/A

RD12 AURORA Reference Component Set
repository

https://github.com/n7space/AURORA
-Reference-Component-Set

N/A

RD13 AURORA Validation repository https://github.com/n7space/AURORA
-Validation

N/A

D5.9 Toolchain Demonstration Report

7

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

ID Title Reference Rev.

RD14 Custom Sparc Instruction Simulator
repository

https://github.com/n7space/sis N/A

RD15 D5.2 AURORA SW Development Plan AUR-SEN-PL-0002 1.3

D5.9 Toolchain Demonstration Report

8

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

3. Terms, definitions and abbreviated terms
This document’s acronyms and abbreviations are listed here under.

AADL Architecture Analysis & Design Language

BSP Board Support Package

CBI Component Based Interfaces

CBIM Component Based Interfaces Model

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HW Hardware

IDE Integrated Development Environment

I/O Input and Output

MBSE Model Based Software/System Engineering

N7S N7 Space

OBET On-Board Elapsed Time

RAM Random Access Memory

RTEMS Real-Time Executive for Multiprocessor Systems

RTOS Real-Time Operating System

SDL Specification and Description Language

SMP Symmetric Multiprocessing

SW Software

QDP Qualification Data Package

VM Virtual Machine

XMI XML Metadata Interchange

XML eXtensible Markup Language

D5.9 Toolchain Demonstration Report

9

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

4. Toolchain Overview

4.1. Introduction
TASTE [RD6], The ASSERT Set of Tools for Engineering, traces its origins to the EU/FP6 ASSERT project, led by the
European Space Agency in the early 00s. It includes a suite of tools (editors, compilers and code
generators/transpilers), as well as a range of software libraries providing (parts of) runtimes, drivers and
middleware. The used technologies include, but are not limited to, Architecture Analysis and Description
Language (AADL), Abstract Syntax Notation 1 (ASN.1), Specification and Description Language (SDL), Simulink,
Qt, C, C++, Ada, Python, RTEMS, FreeRTOS, PolyORB and SOIS Electronic Data Sheets. It contains contributions
from tens of entities from across both the industry and academia.

The toolchain focuses on model-based solutions (“Model Based Systems/Software Engineering”) for the
production of space on-board software. However, it can be also used e.g., in robotics.

As of 2023, the main user interface is the SpaceCreator IDE, which replaced some of the earlier legacy tools still
used at the beginning of the AURORA project. However, many of the tools, including the build system, compilers,
and transpilers, expose command line interface, enabling integration with other GUIs (such as Capella) or
automation (e.g., continuous integration environments).

TASTE toolchain is publicly available and free to download and use, as its core technologies are available under
open-source licenses. TASTE is distributed as a Virtual Machine, available for download [RD6] for the convenience
of end-users. It is also possible to deploy it inside a Docker image or natively within a compatible Linux
distribution, though the amount of effort required may vary significantly. As the range of supported technologies
is quite wide and includes both some specialized and proprietary software that cannot be freely distributed, some
additional tools and libraries may need to be procured separately (e.g., Simulink, QGen, etc.). There is also some
freely available software that is not included in the base distribution to avoid bloat (e.g., RTEMS SMP QDP package
[RD8]), but which can be downloaded by dedicated installation scripts. AURORA toolchain framework release
includes a pre-configured Virtual Machine which includes the additional open-source software required by or
created within the scope of AURORA. Proprietary software is not included due to licensing restrictions and must
be procured by the end users.

4.2. Software behaviour summary
Software definition in TASTE is logically divided into the following parts: data type definition (Data View), logical
architecture (Interface View), physical architecture (Deployment View) and behaviour definition (can be C, Ada,
SDL, Simulink, etc.). SpaceCreator is used to define the Data View, Interface View and Deployment View. Default
Deployment View targeting a single Linux application can be generated automatically. If the behaviour
implementation is to be defined in C, C++ or Ada, SpaceCreator can be also used to edit the relevant files.
Otherwise, the appropriate tool is launched (e.g., OpenGEODE or Simulink), if present in the system. Figure 1,
Figure 2 and Figure 3 present the Interface View, Deployment View and Data View of the same simple system,
which contains 2 components. Behaviour of the Controller component is specified using C code, and the
behaviour of Simulink component is specified using Simulink model, with QGenC as the selected code generator.
The presented Data View is a part of the combined Data View generated from both the user provided (in this
case, via the Simulink importer implemented within the scope of the AURORA project) ASN.1 and TASTE default
data types.

D5.9 Toolchain Demonstration Report

10

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 1 Interface View of a simple system (graphical representation of XML file)

Figure 2 Deployment View of a simple system (graphical representation of XML file)

Figure 3 Data View of a simple system (ASN.1 form)

Project initialization is managed by a dedicated “taste” script.

Project build is managed by the Makefile generated during the project initialization, and optionally adjusted by
the user (e.g., to provide additional defines or paths to libraries). Makefile invocation is possible directly from the
SpaceCreator GUI, via the “build” command.

Build process includes two major steps:

D5.9 Toolchain Demonstration Report

11

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

• Generation of skeletons for the user code, based on the Data View and Interface View
• Final compilation of the target binaries.

Build process relies on Kazoo templating engine, which generates component wrappers, parts of the runtime, as
well as intermediate build scripts, responsible for compilation, linking, inclusion of additional libraries, etc. The
intermediate build scripts, if necessary, call the required code transpilers, e.g., OpenGEODE or QGenC.

It should be noted that changes in the Data View or Interface View are propagated to the interfaces of the code
or models responsible for behaviour definition. The logic contained within the code or models needs to be
manually adjusted. This is particularly important for Simulink models, as unlike SDL, C or Ada, the models are not
divided into separate header/declaration/interface and body/definition/process files. Major updates of the TASTE
toolchain may also require adjustment of the model/code logic to the update interfaces.

Detailed TASTE documentation is available on the TASTE Wiki [RD7].

Figure 4 presents a simplified component definition workflow, relevant to AURORA, and described in [RD4].

Figure 4 Component definition workflow

D5.9 Toolchain Demonstration Report

12

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

5. Toolchain Development

5.1. Context
At the start of the AURORA project, the toolchain was built on around 15 years of experience, and included both
mature tools (Ocarina AADL processor, asn1scc ASN.1 compiler), relatively new additions (Kazoo template
generator), as well as still-under-development software such as SpaceCreator, which, at the time, had not yet
reached operational capacity.

The toolchain is open source and continuously receives various contributions from projects that are independent
from AURORA, also by entities from outside of the AURORA consortium - a good example of this is the
development of the base SpaceCreator IDE by a third-party commercial entity. TASTE also has active users, who
should not be discouraged by software instability, maintenance issues and fragmentation.

TASTE evolution is led and guided by ESA, who has the final say about the accepted features. These factors posed
some challenges and introduced constraints throughout the software design and implementation phase. The
objective was to both fulfil the requirements consolidated by the consortium [RD1], and make sure that
compatibility is maintained, so that the software will be eventually merged with the mainline TASTE distribution.
A software fork would divide the user-base, going against one of the primary AURORA objectives, which was
Component Standardization, and would create maintenance issues in the future. The above resulted in the design
presented in [RD2], which includes:

• Contributions to the SpaceCreator IDE,
• Contributions to the Kazoo template generator, and the relevant templates and Ocarina,

• Contributions to Data Modelling Tools,
• Contributions to TASTE Linux Runtime,

• Contributions to TASTE configuration (AADL definitions, AADL and XML templates, property files and
installation scripts),

• Contributions to Sparc Instruction Simulator,

• Development of TASTE Leon3 Runtime,
• Development of BSP supporting the TASTE Leon3 Runtime,

• Development of UART communication device driver for the TASTE Leon3 Runtime,
• Development of TASTE Reference Component Set.

5.2. Method
The development process started with the requirement consolidation (resulting in [RD1]), followed by the design
(resulting in [RD2]) and the actual software implementation (resulting in the aforementioned software
contributions). Both the design and the implementation were taking into the account the latest developments
within the TASTE toolchain, such as the release of the base SpaceCreator IDE, its update to the newest Qt version,
ESA’s development of OpenGEODE, development of the base TASTE Linux Runtime and third-party contributions
to the Kazoo templates. Adjustments to the implementation required by the changing software were being
iteratively propagated to the design.

The implementation followed a simple process:

• Selection of a feature to be implemented,
• Implementation of the feature, together with relevant tests,

• Review of the implementation and the relevant tests,
• Implementation of the review feedback, if necessary, followed by the iteration of the review process.

The tests created during the feature implementation are included in the relevant repository. Tests for the high-
level AURORA related functionality are contained in SpaceCreator [RD11] and Kazoo [RD10] repositories.

D5.9 Toolchain Demonstration Report

13

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

5.3. SpaceCreator tests
SpaceCreator repository [RD11] contains unit, integration and manual tests of the many functionalities
integrated within the IDE, including Simulink import, function testing and CBI definition (layers, archetypes and
multicast). Unit and integration testing is used whenever possible, and the tests are automatically executed
within the continuous integration environment. Manual testing is reserved mainly for GUI testing and testing
dependent on third-party software that cannot be included in or accessed from the publicly available
SpaceCreator repository.

The most relevant tests for the AURORA project are contained in the following folders:

• tests/unittests/conversion/asn1/simulinktoasn1translator

• tests/unittests/conversion/iv/simulinktoivtranslator
• tests/unittests/csv

• tests/unittests/Simulink
• tests/unittests/testgenerator

• tests/integrationtests/testgenerator
• tests/integrationtests/conversion/simulinktoasn1

• tests/integrationtests/conversion/simulinktoiv
• tests/manual/functiontester

• tests/manual/qgenc
• tests/manual/simulinkimporterplugin

The developed code relies on re-used modules with pre-existing (though sometimes extended) tests, which are
not listed above. This affects mostly the changes made to the Interface View related to layer, archetype and
multicast support, as well as generic model-to-model translation framework.

It should be noted that the manual tests can be used to demonstrate some of the toolchain capabilities from the
user’s perspective. The integration tests can be used to demonstrate some inner workings of the toolchain.

5.4. Kazoo tests
Kazoo repository [RD10] contains integration tests relevant to the developed TASTE Leon3 Runtime and the
extended TASTE Linux Runtime. The most relevant tests for the AURORA project are contained in the following
folders:

• test/linux-cpp-n-2-m-demo

• test/linux-cpp-n-2-m-with-routing-table-demo
• test/linux-cpp-one-2-n-demo

• test/linux-cpp-one-2-n-protected
• test/linux-cpp-one-2-n-sporadic

• test/linux-cpp-one-2-n-unprotected
• test/linux-cpp-startup-priority-demo

• test/linux-get-sender-demo
• test/linux-get-sender-with-broker-demo

• test/RTEMS6_SMP_QDP_cyclic_call
• test/RTEMS6_SMP_QDP_protected_call

• test/RTEMS6_SMP_QDP_sporadic_call
• test/RTEMS6_SMP_QDP_unprotected_call

• test/RTEMS6_SMP_QDP-get-sender-demo
• test/RTEMS6_SMP_QDP-get-sender-with-broker-demo

• test/RTEMS6_SMP_QDP-n-2-m-demo

• test/RTEMS6_SMP_QDP-n-2-m-with-routing-table
• test/RTEMS6_SMP_QDP-perf-mon

D5.9 Toolchain Demonstration Report

14

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

The tests are automatically executed within a continuous integration environment of the main TASTE repository
[RD9]. Some of them involve the execution of the generated code (natively, for the TASTE Linux Runtime, and via
an emulator, for the TASTE Leon3 Runtime), others test only the code generation alone.

Each of the tests can be used to demonstrate some of the toolchain capabilities from the user’s perspective.

D5.9 Toolchain Demonstration Report

15

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

6. Toolchain Demonstration

6.1. Overview
As mentioned in chapter 5, multiple tests, both manual and automatic, were created during the software
development process. However, for the purpose of toolchain demonstration and requirement fulfilment
evidence, a set of validation artefacts was prepared and delivered [RD13]. As stated in [RD1], each requirement
is to be validated by at least one of:

• Test (manual or automated)

• Analysis

• Review of Design
• Inspection

• Example Model
• Example Executable Model

The validation repository [RD13] has the following structure:

• AURORA-Reference-Component-Set – submodule containing the reference component set [RD12].

• archetypes – archetype libraries used in the example models.
• requirements – validation evidence.

The requirements folder contains subfolders, one for each requirement from [RD1], containing the relevant
evidence, in the form compliant with the validation method selected for the given requirement. Example models
can be opened and reviewed in TASTE. Testing – if applicable - can be performed by issuing “make test” command,
unless specific instructions are contained in the accompanying text files. Inspection and review documentation is
also contained in text files.

6.2. Reference Component Set

6.2.1. Overview
During the requirement consolidation and design activities it was concluded that some capabilities, like data
storage and time queries, are application specific and so difficult to reliably standardize. Therefore, instead of
integrating them inside the runtimes and the component interfaces model supported directly within
SpaceCreator, which could result in feature creep and software bloat, they are provided in the form of discrete
components – AURORA Reference Component Set [RD12]. The components are provided bundled with example
models illustrating their use.

6.2.2. TimeService
TimeService component, illustrated in Figure 5, was designed as a reference implementation satisfying the
requirements for TimeService defined in [RD1]. The implementation can be used both in TASTE Linux and Leon3
Runtimes, as it contains code specific for each platform. The exposed interfaces are platform independent, and,
if needed, the implementation can be extended to support more runtimes.

TimeService provides interfaces for querying elapsed time, converting it to CUC and cFS timestamps, and
comparing the timestamps. All interfaces all synchronous, for simplicity and performance.

D5.9 Toolchain Demonstration Report

16

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 5 TimeService component

6.2.3. DataStore
DataStore component, illustrated in Figure 6, was designed as a reference implementation satisfying the
requirements for DataStore defined in [RD1]. The implementation can be used in any runtime supporting C code
(which includes TASTE Linux and Leon3 Runtimes), as it has been written in a portable manner. Time-dependent
queries depend on the TimeService, abstracting the platform-specific details. The data manipulation interfaces
follow a CRUD (Create, Read/Retrieve, Update and Delete) pattern. Additional interfaces are added for events,
allowing monitoring of the DataStore activities, via subscriptions by the interested clients. The implementation
of the reference DataStore component showcases the multicast capabilities introduced during the AURORA
project.

D5.9 Toolchain Demonstration Report

17

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 6 DataStore component

6.3. Requirement coverage
The subsequent chapters correspond to groups of requirements from [RD1], which are representative of the
capabilities of the toolchain. DataStore and Reference Component Set group were merged together as the
requirements are complementary.

6.3.1. N to M asynchronous communication
TASTE originally supported 1:1 and N:1 communication. Multicast (1:N) capability has been implemented during
the AURORA project, which, combined with the N:1 communication, allows to create N:M communication
patterns, as presented in Figure 7. Publishers broadcast messages to Subscribers, and Subscribers report to the
Arbiter to count the messages. The Subscribers can query the source of the received message. TASTE is capable
of automatically generating a graphical user interface to create and receive messages, as illustrated in Figure 8.
The contents of the messages are defined via user-provided ASN.1 data type definitions, and, if required, can
carry timestamps, as illustrated in Figure 9.

D5.9 Toolchain Demonstration Report

18

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 7 Example model with N to M asynchronous communication

Figure 8 MMI generated by TASTE

Figure 9 Example message with a timestamp

D5.9 Toolchain Demonstration Report

19

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Table 1 N to M asynchronous communication requirements

ID Requirement Validated by

NtoM_COM_AURORA_0001 The component model shall support 1 to N asynchronous
communication

M

NtoM_COM_AURORA_0002 The component model shall support N to 1 communication M

NtoM_COM_AURORA_0003 The component model shall support N to M communication M

NtoM_COM_AURORA_0004 The publisher should have the capability to create messages M

NtoM_COM_AURORA_0005 The publisher should have the capability to provide a human
interface to create messages

I

NtoM_COM_AURORA_0006 The messages should have the capability to carry a timestamp
indicating when they were sent

M

6.3.2. Fault Detection
The error communication uses the same facilities as normal communication, and so supports N:1, 1:N and N:M
communication patterns. In order to facilitate interface harmonization, a set of archetypes has been established
(see Figure 10). The archetypes can be user defined, as so tailored to application specific cases. The archetypes
created within the scope of AURORA project are intended to be a reference, and a demonstration of the relevant
capabilities. The IDs can be both included in the message, if defined via ASN.1, and queried via the API for
message sender retrieval. The timestamps, if needed, can be defined via ASN.1. TASTE can detect message
decoding issues (be it ASN.1, or checksum, if supported by the selected packetizer), and user can subscribe to
such information, as illustrated in Figure 11. It should be noted though that as the errors are due to decoding
issue, the decoded information is not available. Instead, the entire frame can be inspected.

D5.9 Toolchain Demonstration Report

20

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 10 Archetypes for error communication

Figure 11 Communication error callback registration

Table 2 Fault Detection requirements

ID Requirement Validated by

FAULT_DETECTION_AURORA_0001 The components shall have the capability to perform N
to 1 synchronous error communication

M

FAULT_DETECTION_AURORA_0002 The components shall have the capability to perform N
to 1 asynchronous error communication

M

FAULT_DETECTION_AURORA_0003 The error communication protocol shall state different
component status

M

D5.9 Toolchain Demonstration Report

21

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

ID Requirement Validated by

FAULT_DETECTION_AURORA_0004 The error communication shall state ID of the
component

M

FAULT_DETECTION_AURORA_0005 The error communication should have a timestamp M

FAULT_DETECTION_AURORA_0006 The subscriber component in the communication shall
have the capability to check for errors from the error
communication received

M

FAULT_DETECTION_AURORA_0007 Components shall have the capability to write their
status in data structures of their own and consulting
other components status

M

6.3.3. Events
The event communication uses the same facilities as normal communication, and so supports N:1, 1:N and N:M
communication patterns. In order to facilitate interface harmonization, a set of archetypes has been established
(see Figure 12). Information carried by Events can be defined via ASN.1. The runtime provides the sender ID and
allows to enable or disable individual routes between components (see Figure 14 for an example). The routes still
have to be statically defined within the Interface View. Users can implement the publisher-subscriber pattern in
a variety of ways, best suitable for their needs. Figure 13 illustrates an example of a custom event bus (the
EventBus component), which distributes the submitted events among the listeners subscribed for each particular
event. The code presented in Figure 14 is part of the EventBus component implementation.

D5.9 Toolchain Demonstration Report

22

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 12 Archetypes for event communication

Figure 13 Example user implementation of an event bus for subscriber-publisher pattern

D5.9 Toolchain Demonstration Report

23

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 14 Example usage of CBI API for altering the message routing within the runtime glue code

Table 3 Events requirements

ID Requirement Validated by

EVENT_SERVICES_AURORA_0001 The component shall have the capability to register event
listeners

M

EVENT_SERVICES_AURORA_0002 The component shall have the capability to send event
notifications

M

EVENT_SERVICES_AURORA_0003 Each event shall have a unique ID M

EVENT_SERVICES_AURORA_0004 Each event should include additional information M

EVENT_SERVICES_AURORA_0005 The component should have the capability to unregister
an event listener

M

6.3.4. Component Management
TASTE is designed with safety critical systems in mind, and as such avoids, if possible, use of facilities not suitable
for such systems, including dynamic resource allocation. Initial component startup is performed automatically, in
the order derived from the priorities specified in the Interface View. Different behaviours can be invoked
depending on reset reason, as presented in Figure 18. Additional application and component specific behaviours
can be implemented by providing relevant interfaces and additional controller components, as illustrated in
Figure 15. Interface standardization can be supported by using archetypes for component management (Figure
16) and power management (Figure 17).

D5.9 Toolchain Demonstration Report

24

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 15 Example of component management via a dedicated controller component

Figure 16 Archetypes for component management

D5.9 Toolchain Demonstration Report

25

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 17 Archetypes for power management

Figure 18 Example of query for a reset reason

Table 4 Component Management requirements

ID Requirement Validated by

COMP_MANA_AURORA_0001 The component model shall provide the capability to perform
a startup of itself on power-on res

M

COMP_MANA_AURORA_0002 The component model shall provide the capability to perform
a startup of itself on processor reset

M

COMP_MANA_AURORA_0003 The component model shall provide the capability to specify
a set of interfaces to allow starting, stopping, suspending,
and resuming behaviors

M

D5.9 Toolchain Demonstration Report

26

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

ID Requirement Validated by

COMP_MANA_AURORA_0004 The component model shall provide support to specify
behaviors for the order of startup and shutdown of
components

M

COMP_MANA_AURORA_0005 The component model shall provide the capability to specify
a set of interfaces for handling Power modes management

M

6.3.5. CBI Runtime
TASTE Leon3 Runtime has been developed and is available as GR712RC RTEMS6 SMP QDP within Deployment
View (see Figure 19). In addition to supporting the previously described communication patterns, it includes
support for performance monitoring, as illustrated in Figure 20.

Figure 19 Example deployment view with TASTE Leon3 Runtime

Figure 20 Performance query example

Table 5 CBI Runtime requirements

ID Requirement Validated by

AUR-RT-0010 Architecture Messaging System included in the TASTE Leon3 Runtime
shall support communication patterns defined in CBI Model

T

AUR-RT-0020 TASTE Leon3 Runtime shall target a Leon3 processor D

D5.9 Toolchain Demonstration Report

27

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

ID Requirement Validated by

AUR-RT-0030 TASTE Leon3 Runtime shall target RTEMS version provided by ESA's
RTEMS SMP QDP

D

AUR-RT-0040 TASTE Leon3 Runtime shall provide the reset reason T

AUR-RT-0050 TASTE UART Communication Device Driver shall be provided for the
TASTE Leon3 Runtime

D

AUR-RT-0060 TASTE Leon3 Runtime shall support timers with microsecond resolution D

AUR-RT-0070 TASTE Leon3 Runtime shall support the measurement of minimum,
maximum and average time spent by a provided sporadic interface

T

AUR-RT-0110 TASTE Leon3 Runtime shall support the measurement of minimum,
maximum and average time spent by a provided cyclic interface

T

AUR-RT-0120 TASTE Leon3 Runtime shall support the measurement of minimum,
maximum and average number of system ticks spent by a provided
sporadic interface

T

AUR-RT-0130 TASTE Leon3 Runtime shall support the measurement of minimum,
maximum and average number of system ticks spent by a provided
cyclic interface

T

AUR-RT-0140 TASTE Leon3 Runtime shall support the measurement of minimum,
maximum and average CPU load

T

6.3.6. Reference Component Set and DataStore
Requirements for the Reference Component Set were used to design and test the Reference Component Set
described in chapter 6.2.

Table 6 Reference Component Set and DataStore requirements

ID Requirement Validated by

DATA_STORE_AURORA_0001 The component model shall support Data Store Subsystem
with publisher and subscriber capabilities

M

DATA_STORE_AURORA_0002 The component model shall support Data Store Subsystem
with a Data Interface to interact with the stored data

M

DATA_STORE_AURORA_0003 The Data Interface shall provide the capability to save data in
memory

M

DATA_STORE_AURORA_0004 The Data Interface shall provide the capability to read data in
memory

M

DATA_STORE_AURORA_0005 The Data Interface shall provide the capability to update data
in memory

M

DATA_STORE_AURORA_0006 The Data Interface shall provide the capability to delete data
in memory

M

D5.9 Toolchain Demonstration Report

28

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

ID Requirement Validated by

DATA_STORE_AURORA_0007 The Data Interface shall ensure data consistency D

DATA_STORE_AURORA_0008 The Data Store Subsystem should have a memory entries log M

AUR-CBI-MDL-0010 CBI Reference Component Set shall include a TimeService
component

E

AUR-CBI-MDL-0020 TimeService shall be compatible with TASTE Leon3 Runtime E

AUR-CBI-MDL-0030 TimeService component shall provide an unprotected
interface for querying OBET time, encoded as an integer
number of elapsed nanoseconds

E

AUR-CBI-MDL-0040 TimeService component shall provide an unprotected
interface for querying clock status

E

AUR-CBI-MDL-0050 TimeService component shall provide an unprotected
interface for converting the integer number of elapsed
nanoseconds into a PTC 10 (relative time) PFC 18 (full CUC
format) timestamp

E

AUR-CBI-MDL-0070 TimeService component shall provide an unprotected
interface for performing comparisons of CUC timestamps

E

AUR-CBI-MDL-0080 TimeService component shall provide an unprotected
interface for performing comparisons of CFS Time Format
timestamps

E

AUR-CBI-MDL-0090 CBI Reference Component Set shall include a DataStore
component

E

AUR-CBI-MDL-0100 DataStore component shall be compatible with any CBI
compliant runtime

E

AUR-CBI-MDL-0110 DataStore component shall store a configurable number of
DataItems

E

AUR-CBI-MDL-0120 The type of the DataItems stored by the DataStore
component shall be user configurable

E

AUR-CBI-MDL-0130 The DataStore component shall have the capability to
automatically remove the oldest DataItem when it is full and
receiving a new DataItem

E

AUR-CBI-MDL-0140 It shall be possible to configure the DataStore to either
automatically remove the oldest DataItem or reject the new
DataItem when it is full

E

AUR-CBI-MDL-0150 The DataStore component shall have the capability to report
an Event when automatically removing a DataItem

E

AUR-CBI-MDL-0160 The DataStore component shall have the capability to report
an Event when rejecting a new DataItem

E

D5.9 Toolchain Demonstration Report

29

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

ID Requirement Validated by

AUR-CBI-MDL-0170 The DataStore component shall timestamp all received
DataItems using the time of item reception

E

AUR-CBI-MDL-0180 The DataStore component shall have the capability to receive
a new DataItem

E

AUR-CBI-MDL-0190 Upon successful reception of a new DataItem, the DataStore
component shall return the storage key of the DataItem

E

AUR-CBI-MDL-0200 The DataStore component shall have the capability to retrieve
a DataItem by key

E

AUR-CBI-MDL-0210 The DataStore component shall have the capability to update
a DataItem using its key

E

AUR-CBI-MDL-0220 The DataStore component shall have the capability to delete a
DataItem using its key

E

AUR-CBI-MDL-0230 Key used to identify a stored DataItem shall not be changed
by any operation on other DataItems (deletion, updated,
addition)

E

AUR-CBI-MDL-0240 The DataStore component shall have the capability to retrieve
DataItems by time range

E

AUR-CBI-MDL-0250 The DataStore component shall have the capability to clear its
contents

E

6.3.7. AOCS/GNC SW components
The capability to integrate AOCS/GNC products within TASTE systems is demonstrated by a modified version of
the ACS model provided by UPM on TASTE Wiki [RD7]. The model includes an additional GUI for controlling and
inspecting the simulation, as depicted in Figure 21. The Simulink model responsible for actual control algorithm
is presented in Figure 22, and output of the simulation is presented in Figure 23.

D5.9 Toolchain Demonstration Report

30

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 21 Example ACS algorithm integration within TASTE system

Figure 22 Example ACS algorithm

D5.9 Toolchain Demonstration Report

31

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 23 Example output of the ACS algorithm

Table 7 AOCS/GNC SW components requirements

ID Requirement Validated by

AOCS-
GNC_AURORA_0001

CBI shall support the information exchanged at runtime to support
interoperability between SW applications and AOCS/GNC product

M

6.3.8. General
Figure 24 presents a component which contains internal data which can be accessed by an external component.
The decision which, how and when data is accessible is defined by the user.

Figure 24 Example component with data accessors

D5.9 Toolchain Demonstration Report

32

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Table 8 General requirements

ID Requirement Validated by

GENERAL_AURORA_0001 The components shall have the capability to have data structures
of their own

M

6.3.9. Requirements for Tool-suite integration
Multiple new functionalities were added to TASTE in order to support the creation of safety critical software for
use in aerospace and robotics. Functions described using Simulink models can now use required protected
interfaces, as long as the selected code generator is QGenC (see Figure 25). The protected interfaces are exposed
to the models via S-Functions (see Figure 26).Similarly, access to input and output vectors of Simulink models can
be split into multiple interfaces, separately for input updates, output queries and step invocation (see Figure 27
and Figure 28).

While traditionally TASTE is responsible for defining the interfaces of Simulink models and generating relevant
stubs, Simulink Importer created within the scope of AURORA project allows to import the interfaces of an
existing Simulink model and integrate it within TASTE system, enabling more flexible workflows (see Figure 29).
It shall be noted however, that that only a subset of Simulink interface definitions is supported. In particular,
arrays are not supported, as they would require significant, potentially breaking changes to TASTE.

Components defined in TASTE (see Figure 30) can be used outside of the TASTE ecosystem, within stand-alone
applications (see Figure 31), provided that the necessary glue code and data definitions are provided (as described
in RD4).

Protected provided interfaces of Components can be validated against sets of reference test vectors using
Function Tester (see Figure 32). The data is to be provided via CSV files (at this moment, only integer, floating-
point and boolean values are supported), and the Components can be exercised both on host system (using
TASTE Linux Runtime), and target embedded platform (using TASTE Leon3 Runtime), as seen in Figure 33. The
execution settings can be customized (see Figure 34). It should be noted that only the two abovementioned
runtimes were tested, and within SpaceCreator they are available under the names of x86 Linux Cpp and
GR712RC RTEMS6 SMP QDP respectively.

Figure 25 Example QGenC based function (simulink) with 2 required interfaces

D5.9 Toolchain Demonstration Report

33

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 26 Trivial Simulink model using a required interface via S-Function

Figure 27 Example Simulink component which provides interfaces for partial vector update and query

D5.9 Toolchain Demonstration Report

34

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 28 Additional properties used to define the interfaces for partial vector update and query

Figure 29 Simulink Importer integration within SpaceCreator

D5.9 Toolchain Demonstration Report

35

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 30 Example TASTE model which contains 2 components (one defined in C and one in Simulink) to be
extracted for use independently of TASTE

Figure 31 Example output of a standalone application, independent of TASTE runtime, integrating TASTE
components

D5.9 Toolchain Demonstration Report

36

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 32 Function Tester integration within SpaceCreator

Figure 33 Target platform selection for Function Tester

D5.9 Toolchain Demonstration Report

37

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 34 Target platform execution configuration for Function Tester

Table 9 Tool-suite integration requirements

ID Requirement Validated by

AUR-CBI-INT-0010 TASTE Interface View capabilities shall be extended to support CBI
Model

M,I

AUR-CBI-INT-0020 It shall be possible to serialize CBI Model compliant Interface View using
AADL

T

AUR-CBI-INT-0030 The CBI Model design shall be based on AADL concepts D

AUR-CBI-INT-0035 The CBI Model design shall consider AADL constraints D

AUR-CBI-INT-0040 SpaceCreator shall be used for CBI Model compliant Interface View
definition

D

AUR-CBI-INT-0050 SpaceCreator shall support QGenC Function type, with behavior
specification to be described via a Simulink model, and intermediate C
code generation via Qgen

M,D

AUR-CBI-INT-0060 It shall be possible to automatically generate a Simulink model skeleton
for TASTE QGenC Function

T

AUR-CBI-INT-0065 It shall be possible to import a Simulink model into TASTE Interface
View as a TASTE QGenC Function

T

AUR-CBI-INT-0070 It shall be possible to include a CBI Model compliant component in a
standalone application that does not depend on a TASTE runtime

T

AUR-CBI-INT-0080 TASTE QGenC Function shall support one provided protected interface,
with input and output arguments, which updates the entire input
vector, performs a processing step, and exposes the output vector

M

AUR-CBI-INT-0090 TASTE QGenC Function shall support required protected interfaces with
input and output arguments

M

AUR-CBI-INT-0130 TASTE QGenC Function shall support ASN.1 Real data type T

D5.9 Toolchain Demonstration Report

38

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

ID Requirement Validated by

AUR-CBI-INT-0140 TASTE QGenC Function shall support ASN.1 Integer data type T

AUR-CBI-INT-0150 TASTE QGenC Function shall support ASN.1 Boolean data type T

AUR-CBI-INT-0160 TASTE QGenC Function shall support ASN.1 fixed size Sequence Of data
type

T

AUR-CBI-INT-0170 TASTE QGenC Function shall support ASN.1 Sequence data type T

AUR-CBI-INT-0180 TASTE QGenC Function shall support ASN.1 IA5String data type T

AUR-CBI-INT-0190 It shall be possible to define a protected provided interface for a TASTE
QGenC Function to perform partial input vector update

M

AUR-CBI-INT-0200 It shall be possible to define a protected provided interface for a TASTE
QGenC Function to perform partial output vector query

M

AUR-CBI-INT-0210 It shall be possible to define an independent protected provided
interface for a TASTE QGenC Function to perform a processing step
using the current input vector values

M

AUR-CBI-INT-0220 It shall be possible to test the code generated for a TASTE QGenC
Function within TASTE host environment by providing a set of reference
inputs and outputs

T

AUR-CBI-INT-0230 It shall be possible to test the code generated for a TASTE QGenC
Function within the target environment by providing a set of reference
inputs and outputs

T

6.3.10. Summary
The requirement coverage summary is presented in Table 10. It should be noted that as some requirements have
more than one validation method assigned, the sum of requirements validated by different methods exceeds the
total number of requirements.

Table 10 Requirement coverage summary

Type Count Percent of total

All 90 100%

Validated 90 100%

Validated by model 38 42%

Validated by executable model 24 27%

Validated by test 19 21%

Validated by inspection 2 2%

Validated by design 9 10%

D5.9 Toolchain Demonstration Report

39

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

7. Recommendations

7.1. General
This chapter presents the recommendations for future activities that could benefit the TASTE toolchain and its
users.

7.2. Interface View
Archetypes, as currently implemented, provide the definition of component interfaces relying on externally
supplied ASN.1 types. This allows flexibility but introduces some burden on the users and does not guarantee full
interface compatibility between separately developed systems sharing the same archetype libraries. The
capability to optionally include ASN.1 (or SEDS, if XML format is preferred) type definitions would mitigate these
issues.

Currently, archetype libraries need to be coded defined manually directly in XML. Capability to extract archetype
definition automatically from Interface View, based on an existing component definition, would make the process
faster and more user friendly. Additional visual editor could be also considered.

Interface layers allow to logically group interfaces (and the relevant connections), both for user convenience (to
increase diagram clarity) and possible analyses. While the layer visibility can be turned on and off, it would be
beneficial to provide visual distinction for the different visible layers, for example in the form of user-configurable
colours.

Logical architecture is currently stored in a monolithic Interface View, affecting the possibilities of component
sharing and re-using, as well as concurrent development. The capability to import and export parts of the
Interface View mitigates this issue, but only to a small extent, as it is mainly applicable to waterfall-like approaches
and introduces significant overhead in agile environments.

7.3. Function Tester
The current implementation of the Function Tester allows testing of only protected provided interfaces of
components that do not contain required interfaces. The focus during the design was on testing components
with behaviours specified via Simulink models, which could not posses required or sporadic interfaces. However,
as the Function Tester can be used for components specified using different languages, and – due to the
developments executed during the AURORA project – the Simulink models can now posses required interfaces if
QGenC is selected as the code generator, this limitation can be constraining.

Additionally, the current implementation supports only scalar types. Support for complex types would make the
solution applicable to a broader range of use-cases.

7.4. Simulink Importer
The current Simulink Importer implementation does not support arrays due to the difficulties in bi-directional
mapping of ASN.1 sequences of and Simulink buses/arrays. The necessary changes would be effort-intensive and
compatibility breaking. However, they could be reconsidered in the future.

7.5. Runtime
TASTE Leon3 Runtime was developed with the help of Sparc Instruction Simulator (SIS) [RD14], which was
extended with proper support for GR712RC Timer and UART modules. The open-source nature of SIS allowed to
extend it and use it in the publicly available TASTE repositories, as well as easily scale the number of concurrently

D5.9 Toolchain Demonstration Report

40

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

working developers. Such things are either impossible or costly due to the licensing restrictions of commercially
available solutions. It could be beneficial to extend SIS with more GR712RC or GR740 peripherals to lower the
costs of development for Leon processors and support continuous integration efforts in open-source projects.

Alternatively, it could be considered to choose and extend a different open-source simulator or emulator, e.g.,
QEMU or Renode.

Currently, TASTE Leon3 Runtime provides only UART communication device driver for inter-partition
communication. However, the target GR712RC processor includes also SpaceWire, Ethernet and CAN links, which
could also be used for communication. Additional drivers, especially for SpaceWire and Ethernet, could be very
useful.

One of the barriers for mission deployment of systems developed in TASTE is the adherence to ECSS standards
and proper quality assurance. ESA’s RTEMS SMP QDP operating system was chosen as the base for TASTE Leon3
Runtime with this in mind. However, a pre-qualification package for the entire runtime could increase its quality
and broaden TASTE appeals for use in actual missions.

D5.9 Toolchain Demonstration Report

41

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

8. Lists

8.1. List of Tables
Table 1 N to M asynchronous communication requirements ... 19

Table 2 Fault Detection requirements .. 20

Table 3 Events requirements ... 23

Table 4 Component Management requirements ... 25

Table 5 CBI Runtime requirements .. 26

Table 6 Reference Component Set and DataStore requirements ... 27

Table 7 AOCS/GNC SW components requirements .. 31

Table 8 General requirements ... 32

Table 9 Tool-suite integration requirements .. 37

Table 10 Requirement coverage summary ... 38

Table 11 Code metrics .. 43

8.2. List of Figures
Figure 1 Interface View of a simple system (graphical representation of XML file) 10

Figure 2 Deployment View of a simple system (graphical representation of XML file) 10

Figure 3 Data View of a simple system (ASN.1 form) ... 10

Figure 4 Component definition workflow ... 11

Figure 5 TimeService component .. 16

Figure 6 DataStore component ... 17

Figure 7 Example model with N to M asynchronous communication .. 18

Figure 8 MMI generated by TASTE ... 18

Figure 9 Example message with a timestamp .. 18

Figure 10 Archetypes for error communication .. 20

Figure 11 Communication error callback registration .. 20

Figure 12 Archetypes for event communication ... 22

Figure 13 Example user implementation of an event bus for subscriber-publisher pattern 22

Figure 14 Example usage of CBI API for altering the message routing within the runtime glue code 23

Figure 15 Example of component management via a dedicated controller component 24

Figure 16 Archetypes for component management ... 24

Figure 17 Archetypes for power management ... 25

Figure 18 Example of query for a reset reason .. 25

D5.9 Toolchain Demonstration Report

42

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

Figure 19 Example deployment view with TASTE Leon3 Runtime ... 26

Figure 20 Performance query example ... 26

Figure 21 Example ACS algorithm integration within TASTE system .. 30

Figure 22 Example ACS algorithm ... 30

Figure 23 Example output of the ACS algorithm ... 31

Figure 24 Example component with data accessors... 31

Figure 25 Example QGenC based function (simulink) with 2 required interfaces 32

Figure 26 Trivial Simulink model using a required interface via S-Function ... 33

Figure 27 Example Simulink component which provides interfaces for partial vector update and query 33

Figure 28 Additional properties used to define the interfaces for partial vector update and query 34

Figure 29 Simulink Importer integration within SpaceCreator .. 34

Figure 30 Example TASTE model which contains 2 components (one defined in C and one in Simulink) to be
extracted for use independently of TASTE ... 35

Figure 31 Example output of a standalone application, independent of TASTE runtime, integrating TASTE
components ... 35

Figure 32 Function Tester integration within SpaceCreator ... 36

Figure 33 Target platform selection for Function Tester .. 36

Figure 34 Target platform execution configuration for Function Tester ... 37

D5.9 Toolchain Demonstration Report

43

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

9. Annex A – Code metrics
In addition to validation with respect to D5.1 [RD1] and in response to D2.3 [RD15], the following code metrics
were gathered:

• Cyclomatic complexity,
• Nesting level (reported by tools as maximum indentation),

• Lines of code (LOC).

For new repositories (such as Leon3-BSP) the entire codebase has been measured. For existing repositories (such
as TASTE-Linux-Runtime), which were extended in the scope of the AURORA project, the codebase has been
measured before the start of the AURORA related modifications and after the modifications, so that two sets of
values were produced – total and delta. It has to be noted however, that Kazoo and SpaceCreator repositories
were being concurrently modified by different entities, within the scope of several projects, and the changes
were impossible to be automatically separated. Therefore, the respective deltas also include external
contributions unrelated to AURORA itself, and as such should be considered as overestimated approximations.

The gathered metrics are presented in Table 11.

Table 11 Code metrics

Repository Cyclomatic complexity Nesting Non-empty LOC Total LOC

Leon3-BSP 13 5 1720 2648

TASTE-LEON3-Drivers 6 3 278 395

TASTE-LEON3-Runtime 2 3 231 490

AURORA-Reference-Component-Set 8 5 1274 1651

AURORA-Validation 21 7 21768 27982

SIS (all) 325 7 15846 20972

SIS (new) 325 7 1056 1345

TASTE-Runtime-Common (all) 11 5 1034 1895

TASTE-Runtime-Common (new) 11 5 569 778

TASTE-Linux-Runtime (all) 7 3 347 16

TASTE-Linux-Runtime (new) 7 3 846 28

Kazoo (all) 49 6 61066 107796

Kazoo (new) 49 7 11305 15625

SpaceCreator (all) 129 10 103209 143785

SpaceCreator (new) 135 10 96324 144953

DMT (all) 87 N/A 33989 N/A

DMT (new) 87 N/A 91 N/A

 Comments on method:

• For Leon3-BSP, TASTE-LEON3-Drivers, TASTE-LEON3-Runtime, AURORA-Reference-Component-Set,
AURORA-Validation, TASTE-Linux-Runtime, code metrics have been prepared for the entire projects.

• For TASTE-Linux-Runtime, changes made in only one branch (n7s-aur#141-get-sender) were taken into
account. For SIS, SpaceCreator, Kazoo, TASTE-Runtime-Common, two sets of metrics have been prepared

D5.9 Toolchain Demonstration Report

44

© AURORA Consortium, 2023 CONFIDENTIAL

AUR-N7S-RP-0003

1.3

28/04/2023

– one for the most recent state of the project (as of 6th March 2023) and one for the time of the first
commit by N7S team. Because of that, there may be a small surplus of the reported amount of code
written, as some of the changes might have been introduced by other teams working in parallel.

• Reports have been generated with metrixpp, except for DMT.

• For DMT code metrics have been prepared using lizard.

D5.9 Toolchain Demonstration Report

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101004291

	1. Introduction
	1.1. Purpose, scope and content
	1.2. Project motivation and objectives

	2. Applicable and reference documents
	2.1. Applicable documents
	2.2. Reference documents

	3. Terms, definitions and abbreviated terms
	4. Toolchain Overview
	4.1. Introduction
	4.2. Software behaviour summary

	5. Toolchain Development
	5.1. Context
	5.2. Method
	5.3. SpaceCreator tests
	5.4. Kazoo tests

	6. Toolchain Demonstration
	6.1. Overview
	6.2. Reference Component Set
	6.2.1. Overview
	6.2.2. TimeService
	6.2.3. DataStore

	6.3. Requirement coverage
	6.3.1. N to M asynchronous communication
	6.3.2. Fault Detection
	6.3.3. Events
	6.3.4. Component Management
	6.3.5. CBI Runtime
	6.3.6. Reference Component Set and DataStore
	6.3.7. AOCS/GNC SW components
	6.3.8. General
	6.3.9. Requirements for Tool-suite integration
	6.3.10. Summary

	7. Recommendations
	7.1. General
	7.2. Interface View
	7.3. Function Tester
	7.4. Simulink Importer
	7.5. Runtime

	8. Lists
	8.1. List of Tables
	8.2. List of Figures

	9. Annex A – Code metrics

