
This project h
and innovatio

F

D

D

D

In
light SW Autocoding Life-cycle
as received funding from the Eur
n programme under grant agreem

process – Model-in-the-Loop

D

ternal Reference: DOC0
4.1

ocument Code: AUR-SEN-RP-0031

ocument Version: 1.0

ocument Date: 15/11/2021
opean Union’s Horizon 2020 research
ent No 101004291

0205396

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

0

© AURORA Consortium, 2021 PUBLIC

Signature Control

Written Checked Approved

Configuration
Management

Approved

Quality Assurance

Approved

 Project Management

J. Gómez A. Rodríguez R. Talavera A. López A. Rodríguez

Date and Signature Date and Signature Date and Signature Date and Signature Date and Signature

Signature not needed if electronically approved by route

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

1

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

Changes Record

Rev Date Author Affected section Changes

0.1 2021-10-25 J. Gómez All Initial draft version

1.0 2021-11-15 J. Gómez All Initial issue

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

2

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

Index

1.Introduction ... 4

1.1. Purpose ...4

1.2. Scope ...4

1.3. Document structure ...4

2. Related documentation ... 5

2.1. Applicable documents ... 5

Table 1 Applicable documents ... 5

2.2. Reference documents .. 5

Table 2 Reference documents ... 5

2.3. Acronyms ... 6

Table 3 Acronyms .. 6

2.4. Terms and definitions ... 6

3. Overview ... 7

4. Flight SW Autocoding Life-cycle Process 9

Figure 1 Traditional GNC SW development with manual coding (from [RD4]) .. 10

Table 4: Test facilities definition ... 11

Figure 2: Autocoding vs Manual SW development cycle ... 11

5. Model-in-the-Loop Stage ... 12

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

3

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

5.1. Unitary Integration Test ... 12

Figure 3: UIT Model harness.. 13

5.2. Performance cases in FES ... 13

5.3. Code Generation .. 14

Figure 4 ESA proposed development life-cycle for AOCS/GNC SW (from [RD4]) ... 15

6. Software-in-the-Loop Stage... 16

7.Processor-in-the-Loop and Hardware-in-the-loop Stage 17

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

4

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

1. Introduction

1.1. Purpose

This document describes the Flight SW life-cycle for autocoding and the different processes and stages of a
model-based process which cover the whole SW life-cycle from requirements to qualification.

The procedure is mainly focused for AOCS/GNC SW which has been selected as the primary use case of the
project, but it can be adapted to other subsystems as well.

1.2. Scope

The Flight SW autocoding life-cycle process definition is the main core of the WP4 Flight SW Autocoding Life-cycle
Process Definition of AURORA, as described in Annex 1 Part A of [AD1]. The document gathers the main process
for the SW generation toolchain departing from the System requirements up to complete qualification,
detailing it for the different stages of a typical software verification process

This document is an output of the T4.1 activity included in WP4. Future version of this deliverable will be
provided at months M15, M18 and M21.

1.3. Document structure

The document has been structured as follows:

 Section 1: this introduction

 Section 2: Related documentation

 Section 3: Overview of the AURORA methodology

 Section 4: Flight SW Autocoding Life-Cycle Process

 Section 5: Model-in-the-loop stage

 Section 6: Software-in-the-loop stage

 Section 7:Processor-in-the-loop and Hardware-in-the-loop stage.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

5

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

2. Related documentation

The following documents in the latest issue/revision from a part of this document.

2.1. Applicable documents

AD # Title Project Reference Issue Rev

[AD1] AURORA Grant Agreement GA number 101004291 - -

[AD2] AURORA Consortium Agreement (CA) CA Nº 101004291 AURORA - -

Table 1 Applicable documents

2.2. Reference documents

RD # Title Reference Issue Rev

[RD1] Space engineering Software ECSS‐E‐ST‐40 C -

[RD2] Space Software Product Assurance ECSS‐Q‐ST‐80 C -

[RD3] Software Engineering Handbook ECSS-E-HB-40 A -

[RD4] Guidelines for the Automatic Code Generation for
AOCS/GNC flight SW Handbook. Vol1 – General
concepts

- 1 0

[RD5] AOCS/GNC Modelling Guidelines AUR-SAE-RP-0006 1 1

[RD6] Guidelines for the Automatic Code Generation for
AOCS/GNC flight SW Handbook. Vol2 –
Mathworks specific guidelines

- 1 1

Table 2 Reference documents

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

6

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

2.3. Acronyms

Acronym Description

AD Applicable Document

ATB Avionics Test Bench

COTS Commercial Off The Shelf

EBd Executive Board

ESE Engineering Simulation Facility

FES Functional Engineering Simulator

GA Grant Agreement

GeA General Assembly

HILF Hardware-In-the-Loop Facility

HW Hardware

MIL Model in the Loop

N/A Not Applicable or Available

PFM Proto Flight Model

PIL Processor in the Loop

RD Reference Document

SDP Software Development Plan

SIL Software in the Loop

SRR System Requirements Review

SVF Software Verification Facility

SW Software

TRB Test Review Board

WP Work Package

Table 3 Acronyms

2.4.Terms and definitions

N/A

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

7

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

3. Overview

The AURORA WP4 “Flight SW Autocoding Life-cycle Process Definition” [AD1] approaches the definition of a SW
Autocoding Life-cycle Process, where Autocoded system refers to any Complex-Models systems that make a full
use of MATLAB/Simulink for modelling the algorithms and behavior of the system. The most representative
case of such a system in Space missions are the AOCS/GNC systems. In our approach Design and Development
and running chained to verification activities and therefore improving the OBSW integration and validation
program.

This approach is supported by:

 An early verification of the navigation models.

 Auto-generated source code software following an iterative process.

 Mission requirements Verification at GNC model level and component model.

 Integration phase when OBSW components implement standard interfaces (API).

 Aligned with Space standards and allowing as much as possible the automation of the process.

 Iterative execution of the WP taking inputs from the technology Demonstrator activity.

The Model-in-the-loop (MIL) , Software-In-the-Loop (SIL) and Processor-In-the-Loop (PIL) are key points of the
incremental validation in order to verify the behavior of the GNC code in a representative environment and to
identify computational resources required through code profiling.

The whole process is iterative. This means that it is applicable several times for each function/mode iteration.
The functional iterations are defined e.g., for a subset of functions that can be easily validated independently.
For example, an AOCS iteration is associated with an AOCS mode. In the following, the subsystem of choice is
the AOCS, but could be any functional chain subsystem expressed with models having Autocode capability (e.g.,
thermal, power).

This activity enclosed the definition of following In-the-loop steps:

 Model-in-the-loop

The models have to comply with Aurora modelling standards and guidelines, (QGen framework) and the
model simulations demonstrate the feasibility of the preliminary design and the robustness of the
selected solutions using Monte Carlo test campaigns. Being able to perform such tests during the
preliminary stages of the development allows for efficient iterations at system level, giving valuable
contributions for trade-offs that involve other subsystems.

 Software-In-the-Loop

The auto-coding of the navigation model (QGen framework) will allow testing the Autocoded SW with
respect to the algorithms already validated in a MIL environment.

 Component-In-the-Loop

The SW as an OBSW component has to follow the AURORA standard API, therefore the SW is
integrated into a wrapper that implements the API for getting the services provided by the algorithms
of the model-based design GNC and reacting to its outputs (CBI component model). The TASTE/QGen
tool suite is used to compile, link and execute the components software.

The TASTE/QGen tool suite is used to compile, link and execute the software.

 Platform-In-the-Loop

To validate the SW component running in the execution platform connected to an open-loop-
environment, typically using an Avionics Test Bench (ATB) equipment.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

8

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

The process is iterative, and any error or change is done at model-level only and implies to iterate previous In-
the-loop steps.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

9

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

4. Flight SW Autocoding Life-cycle Process

The space SW generation procedure has traditionally relayed on a linear approach based on manual coding of
the SW functions, which departs from the requirements coming from the top-level system, which are derived
into SW requirements. From them, a SW architecture is defined, and further requirement levels might be
derived. Then, an implementation procedure follows, which is lately checked and verified at the different levels,
from unit to integrated architecture, in different facilities. Moreover, the SW is checked for readiness,
correctness, maintainability, trying to detect implementation errors beyond those that can be detected by test.
This process is tedious and implies a big number of resources.

For AOCS/GNC, the main use case included in AURORA, this traditional process was composed of two parallel
workflows with different stages:

 Matlab/Simulink Models:

This workflow relies on the implementation of Simulink models to define the GNC algorithm for the SC.
It consists of the following steps:

o Definition of requirements, which is common to the other workflow. Departing from the
system requirements some requirements are derived to the GNC algorithms.

o Model prototyping, developing the basic GNC algorithms to cover the mission/system needs.
This covers the preliminary design.

o Model detailed design. This includes the refinement of the models and the formal verification
campaign using a representative simulator. This stage finishes the model workflow.

 Manual SW implementation:

o Definition of requirements, which is common to the other workflow. Departing from the
system requirements some requirements are derived to the SW requirements.

o From the algorithm implementation in the preliminary design phase, the SW requirements are
refined to include compatibility with the outlined design.

o Based on the SW requirements, the manual part of the SW not depending on the GNC
algorithms is implemented. Once the preliminary design is over, a first GNC coding is performed
and integrated and tested together with the other SW part.

o After the detailed design phase, the SW is refined introducing some updates and the details
coming from GNC algorithms. A SW validation campaign is performed in a representative
simulation environment.

o Then the generated SW is integrated within the system facilities and an extensive verification
campaign is run (SIL, PIL, HIL).

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

10

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

Figure 1 Traditional GNC SW development with manual coding (from [RD4])

This traditional workflow normally takes large implementation times, is prone to human errors which are
difficult to track and debug and it is therefore more expensive and less reliable.

An alternative to use this manual based process, relies on autocoding techniques applied to models, in a model-
based approach targeting a simplified and more reliable procedure, reducing the implementation times, the
number of errors and increasing maintainability, readiness and comprehensiveness.

For AOCS/GNC the use of this model-based approach is the natural evolution of the abovementioned manual
procedure, since the models have been already used in the past and can be used as baseline architecture and
SW implementation, by using the appropriate autocoding conversion tool.

This document gathers the different processes and stages of this model-based process which cover the whole
SW life-cycle from requirements to qualification.

The Table 4: Test facilities definition summarizes the main stages and facilities of AOCS/GNC validation.

Verification
Stage

Facility Comment

MIL FES

Functional Engineering
Simulator

Model of the GNC algorithms implemented in a simulation
framework (Matlab/Simulink)

SIL FES

Functional Engineering
Simulator

Software produced from model is connected to a spacecraft
simulator to demonstrate that software is still requirement
compliant

PIL SW Test Bench SW is executed on a real OBC, which is connected to a Real Time
Simulator (RTS). This stage is done to verify computing budget
usage

SVF SW Validation Facility The AOCS/GNC software is executed with the whole on-board
software into a model of the OBC

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

11

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

Verification
Stage

Facility Comment

HWIL FUMO (Functional
model)

ATB (Avionics Test
Bench)

PFM (Proto Flight
Model)

Final on-board software is run with some real avionics equipment
with some spacecraft simulator, which closes the loop

Table 4: Test facilities definition

The complete software development cycle is presented in Figure 2: Autocoding vs Manual SW development
cycle, where the different milestones and documents to be reported are listed at every milestone.

Figure 2: Autocoding vs Manual SW development cycle

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

12

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

5. Model-in-the-Loop Stage

This stage is focused on the generation of Matlab/Simulink models, compliant with requirements and early
validated with tests that will result in the generation of an automatically generated code with QGen,
representative of the original model.

This stage is quite similar with the traditional approach of manual code generation, however some difference in
the process is observed due to the earlier availability of the AOCS/GNC SW. At the beginning of the process the
following documents shall be prepared:

 ICD: joint work shared between the GNC and SW team in which the data flow and frequency required by
the GNC specification is taken into account. Definition of the code generator settings are defined in this
document. The GNC engineer is no longer blind to the software side of the process and shall have some
insight on the final autogenerated code.

 Model Requirements Specification: document used to design and implement the GNC algorithms based
on the GNC requirements specification.

Once that those documents are issued for the SRR milestone (System Requirements Review), the Model- in-the-
Loop begins and the generation of the models can start. In this step, the GNC engineer is being supported by a
Modelling Guideline Handbook, which gathers industry modelling standards that are recommended to follow
for a later easy integration and model maintainability. For a generic Simulink guideline for autocoding model
generation, please refer to [RD5] and [RD6].

For Aurora’s scope, a custom set of guidelines was generated ([RD5]). These new guidelines are Euclid heritage
and were modified to account for QGen limitations i.e., limitations in terms of Simulink block constraints for
instance.

The resulting Simulink will apply the algorithms specified in the Model Requirements Specification. In parallel,
models representative of the real word, such as DKE models, sensors or actuators shall be developed and ready
for performance test.

These model algorithms are then subjected to testing in order to ensure compliance against mission
requirements, to identify bugs and to ensure sufficient model coverage. Note that model coverage is not the
same as code coverage. Nonetheless, typically, large model coverage implies large code coverage, something to
be seek in later stages of software validation. Two different test scenarios are defined:

 Unitary Integration Test of the individual models

 Verification of the AOCS/GNC performance requirements on a validated FES with representative test
cases. This campaign typically includes a full Monte Carlo campaign.

5.1. Unitary Integration Test

Testing starts at unitary level, where Unitary Integration Tests are defined by the GNC engineer. This UIT are
developed to cover all the functionalities implemented in each function, to test boundaries and to verify
requirements allocated to unitary level. These tests can be considered as the classical bottom-up approach in
which a set of pre-defined inputs are fed to the model in open-loop simulations.

For each AOCS mode, the UIT campaign will start with the deeper models (leaf models), which are hierarchy
tested in the first place. These leaf models are isolated from the rest of the models. Once that the model has
been properly tested and its behavior has been properly assessed, the process continues with upper levels,
aggregating the previously tested models. Following this procedure, if a top model test fails, it can be safe to
assume that the lower models do correctly behave.

The typical procedure of generating the UIT is via test harness, in which the model to test is placed into a model
reference block where inputs are fed, and outputs are collected for a final PASS/FAIL evaluation according to
the test specification. I/O signals shall be collected for later verification campaigns (SIL/PIL) as those will be used
as a confirmation that the autogenerated code behaves as models, that is, same inputs results in same outputs.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

13

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

In this sense, the AOCS models are used as Technical Specification for the auto generated code as the software
behavior is validated against model behavior. Library functions used in the model development shall also be
unitary tested.

Inputs can be fed via Simulink Signal builder, which allows for easy change of inputs signals and creation of
various signal groups. This method allows for an effective and easy execution of the unitary test with easy signal
replacement without effectively changing the test harness.

Collection of the I/O can for each test case is typically done via the Signal Logging capabilities of Simulink,
where data is automatically stored as a Simulink Dataset variable, although the user is free to choose the most
suitable signal save option for their need.

Figure 3: UIT Model harness

 Steps

a) Generate UIT specification, defining what inputs and outputs are expected

b) Generate the test harness with the following components

a. Input block

b. Model reference block

c. Output block with PASS/FAIL criteria

c) Run MIL UIT to validate correct test implementation

a. In case of FAIL, review test case implementation and repeat the MIL execution test

d) Gather I/O signals for MIL-SIL comparison

e) Report results obtained in the corresponding section of the Test Report

In conclusion, UIT are open-loop test cases defined for an early verification of the GNC algorithms and
requirements at unitary level with the addition of a preliminary model coverage. Once the model’s behavior has
been tested at unitary level, then, they can be included inside a simulation architecture for requirements
verification.

5.2. Performance cases in FES

A Functional Engineering Simulator is a simulation environment whose purpose is the verification of the
AOCS/GNC models. This simulator is in charge of managing the different test and mission scenarios specified,
being also a direct support of the software development.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

14

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

The main components of a FES architecture are:

 Simulation Engine: responsible of the definition of a simulation scenario, definition of the mission and
the configuration of the models to be simulated. Parameters are configured and pre-processed to
obtain simulation parameters, which are set in the mask parameters.

 Simulation Core: Simulink templates that is customized for each operation mode. Different Simulink
libraries containing the GNC algorithms are present so that the template can replace the adequate
models.

 Monte Carlo Simulation: functions that manage the configuration and control of Monte Carlo
simulations, generating perturbed values of the model parameters and controlling the storage of the
raw data

 Post-processing: functions to post-process the raw data obtained. This component typically generates
representative plots and graphs needed for AOCS/GNC validation.

 Failure injection: component in charge of injecting failures in the simulation to check failure conditions
or FDIR algorithms. Typical failure comprises of freeze signal, set a signal to a desired value or linear
signal behaviour.

It is important to remark that the FES itself must be validated according to a Software Verification and
Validation Plan, which complies with the ECSS-E-40 standard.

Unlike UIT, test cases are run in closed loop, including, not only the GNC models generated and unitary tested,
but the real word representative models (DKE, sensors and actuators), which were previously validated to
ensure good overall performance.

Test cases in a FES are no longer defined as a set of inputs, but as a timeline file that it is read by the simulation
engine. This timeline defines the set of initial conditions and the operational timeline, which defines the set of
commands to be followed. This timeline is typically defined as an external file, XML file for instance, however,
this file is simulator dependent.

Test cases are defined in order to verify that the system is compliant with the requirements specified in the
SRR. These tests may include single shots runs with simulator parameters adjusted for adequate testing or
Monte Carlo simulations, with the perturbation of relevant parameters.

Once that the results of the test have been formally verified, reported and accepted in Test Reports, the PDR
closes this stage.

5.3. Code Generation

Code generation will be further discussed in the next sections as this process belongs to the SIL campaign,
nonetheless it is close related to the model development, so a brief insight is presented here.

After running the complete MIL campaign verification, the code generation process starts. Autocoding tools
such as Simulink Coder toolbox or QGen can be used to translate the model architecture into C code software
files, which can be embedded into a software testing facility for the SIL campaign.

The proposed approach here is that the autogenerated code shall not be manually modified at any level. In case
of some bugs identified during the software verification process that require correction, the solution shall be
applied to the model, being the autocode process regenerated. This is done to ensure that the models and the
code generated from them are always align and the AOCS team and Software team can maintain their own
process with no major differences. An assessment of the tests to be repeated is done to ensure that the
modifications to the models do not imply fail tests.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

15

© AURORA Consortium, 2021 PUBLIC

Figure 4 ESA proposed development life-cycle for AOCS/GNC SW (from [RD4])

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

16

© AURORA Consortium, 2021 PUBLIC

6. Software-in-the-Loop Stage

This section is an output of the Task 4.2 Definition of the Software-In-the-Loop

To be written in future document issues.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

17

© AURORA Consortium, 2021 PUBLIC

AUR-SEN-RP-0031

1.0

15/11/2021

7. Processor-in-the-Loop and Hardware-in-the-loop

Stage

This section is an output of the Task 4.3 Definition of the Component-In-the-Loop Task 4.2 Definition of the
Software-In-the-Loop

To be written in future document issues.

D4.1 Flight SW Autocoding Life-cycle process – Model-in-the-Loop

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101004291

		2021-12-02T08:12:40+0100
	Javier Gomez del Pulgar Vazquez

		2021-12-02T09:26:58+0100
	Alfonso López

		2021-12-02T15:57:02+0100
	Ana Isabel Rodriguez

		2021-12-02T15:57:17+0100
	Ana Isabel Rodriguez

		2021-12-02T16:06:15+0100
	Raquel Talavera

